Displaying all 4 publications

Abstract:
Sort:
  1. Vikram P, Chiruvella KK, Ripain IH, Arifullah M
    Asian Pac J Trop Biomed, 2014 Jun;4(6):430-5.
    PMID: 25182942 DOI: 10.12980/APJTB.4.2014C1255
    Medicinal plants and herbal preparations are gaining renowned interest in scientific communities nowadays due to their reliable pharmacological actions and affordability to common people which makes them effective in control of various diseases. Polygonum minus (Polygonaceae) locally known as kesum is an aromatic plant commonly used in Malay delicacies. The plant is having potential applications due to its high volatile oil constituents in perfumes and powerful antioxidant activity. It has been used traditionally to treat various ailments including dandruff. The research has been carried out by various researchers using different in vitro and in vivo models for biological evaluations to support these claims. This review paper may help upcoming research activities on Polygonum minus by giving up to date information on the phytochemical constituents and medicinal properties of kesum to a possible extent with relevant data.
  2. Mohammed A, Chiruvella KK, Namsa ND, Ghanta RG
    Physiol Mol Biol Plants, 2015 Jul;21(3):417-24.
    PMID: 26261406 DOI: 10.1007/s12298-015-0297-z
    Bixa orellana L. (Bixaceae) is a multipurpose tree grown for the production of commercially important dyes. In the present study, an efficient, reproducible protocol was developed for direct plant regeneration from in vitro derived petiole explants of Bixa orellana L. Murashige and Skoog medium (MS) supplemented with 2-isopentenyl adenine (9.8 μM) and naphthalene acetic acid (10.7 μM) was found to be optimum for production of high frequency of shoot organogenesis. Subculturing of the shoots onto the fresh MS medium containing similar concentrations of 2-iP (9.8 μM) and NAA (10.7 μM) produced elongated shoots. Elongated shoots when placed onto MS medium supplemented with 1.7 μM indole-3-acetic acid and 14.7 μM 2-iP produced optimal rooting. Rooted plantlets were acclimatized and transplanted to the field successfully. Histological investigation revealed the origin of shoot primordia, from sub-epidermal cells of petiole explants. The regeneration protocol developed in this study can be useful for mass in vitro propagation and effective genetic transformation of commercially important edible dye yielding tree species.
  3. Arifullah M, Namsa ND, Mandal M, Chiruvella KK, Vikrama P, Gopal GR
    Asian Pac J Trop Biomed, 2013 Aug;3(8):604-10; discussion 609-10.
    PMID: 23905016 DOI: 10.1016/S2221-1691(13)60123-9
    To evaluate the anti-bacterial and anti-oxidant activity of andrographolide (AND) and echiodinin (ECH) of Andrographis paniculata.
  4. Mohammed A, Chiruvella KK, Rao YK, Geethangili M, Raghavan SC, Ghanta RG
    PLoS One, 2015;10(10):e0141154.
    PMID: 26488879 DOI: 10.1371/journal.pone.0141154
    Andrographis lineata is an herbal medicinal plant used in traditional medicine as a substitute for Andrographis paniculata. Here, using mature leaf explants of A. lineata we demonstrate for the first time the callus induction established on MS medium containing 1.0 mg l-1 IAA. Dried callus was subjected to solvent extraction with acetone. Further the acetone residue was separated by silica gel column chromatography, crystallized and characterized on the basis of nuclear magnetic resonance (proton and c13) and liquid chromatographic mass spectroscopy. This analysis revealed the occurrence of two known flavones namely, 7-O-methylwogonin (MW) and Echioidinin (ED). Furthermore, these compounds were tested for their cytotoxicity against leukemic cell line, CEM. We identify that ED and MW induced cytotoxicity in a time- and concentration-dependent manner. Further increase in the LDH release upon treatment with ED and MW further confirmed our cytotoxicity results against leukemic cell line. Strikingly, MW was more potent than ED when compared by trypan blue and MTT assays. Our results recapitulate the utility of callus cultures for the production of plant specific bioactive secondary metabolites instead of using wild plants. Together, our in vitro studies provide new insights of A. lineata callus cultures serving as a source for cancer chemotherapeutic agents.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links