Displaying all 2 publications

Abstract:
Sort:
  1. Dhivagar R, Suraparaju SK, Atamurotov F, Kannan KG, Opakhai S, Omara AAM
    Water Sci Technol, 2024 Jun;89(12):3325-3343.
    PMID: 39150427 DOI: 10.2166/wst.2024.189
    In this current investigation, the experimental performance of a solar still basin was significantly enhanced by incorporating snail shell biomaterials. The outcomes of the snail shell-augmented solar still basin (SSSS) are compared with those of a conventional solar still (CSS). The utilization of snail shells proved to facilitate the reduction of saline water and enhance its temperature, thereby improving the productivity of the SSSS. Cumulatively, the SSSS productivity was improved by 4.3% over CSS. Furthermore, the SSSS outperformed in energy and exergy efficiency of CSS by 4.5 and 3.5%, respectively. Economically, the cost per liter of distillate (CPL) for the CSS was 3.4% higher than SSSS. Moreover, the SSSS showed a shorter estimated payback period (PBP) of 141 days which was 6 days less than CSS. Considering the environmental impact, the observed CO2 emissions from the SSSS were approximately 14.6% higher than CSS over its 10-year lifespan. Notably, the SSSS exhibited a substantial increase in the estimated carbon credit earned (CCE) compared to the CSS. Ultimately, the research underscores the efficacy of incorporating snail shells into solar still basins as a commendable approach to organic waste management, offering economic benefits without compromising environmental considerations.
  2. Christopher SS, Thakur AK, Hazra SK, Sharshir SW, Pandey AK, Rahman S, et al.
    PMID: 36940023 DOI: 10.1007/s11356-023-26399-2
    The aim of this research was to develop a model for a solar refrigeration system (SRS) that utilizes an External Compound Parabolic Collector and a thermal energy storage system (TESS) for solar water heating in Chennai, India. The system parameters were optimized using TRNSYS software by varying factors such as collector area, mass flow rate of heat transfer fluid, and storage system volume and height. The resulting optimized system was found to meet 80% of hot water requirements for the application on an annual basis, with an annual collector energy efficiency of 58% and an annual TESS exergy efficiency of 64% for a discharge period of 6 h per day. In addition, the thermal performance of 3.5 kW SRS was studied by connecting it to an optimized solar water heating system (SWHS). The system was found to generate an average cooling energy of 12.26 MJ/h annually, with a coefficient of performance of 0.59. By demonstrating the ability to efficiently generate both hot water and cooling energy, the results of this study indicate the potential for utilizing a SWHS in combination with STST and SRS. The optimization of system parameters and the use of exergy analysis provide valuable insights into the thermal behavior and performance of the system, which can inform future designs and improve the overall efficiency of similar systems.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links