Acoustic rhinometry (AR) evaluates the geometry of the nasal cavity by measuring the minimum cross-sectional area (MCA) and nasal volume (V) by means of acoustic reflection. Understanding the normal and pathologic conditions of the internal nasal cavity using AR is important in the diagnosis of structural abnormalities in patients. The aim of this study was to investigate the normal range of AR parameters in healthy volunteers from three ethnic groups in Singapore: Chinese, Malay and Indian. We also attempted to evaluate the role of these measurements in the documentation of structural abnormalities in the nose. A total of 189 Singaporeans, aged > or = 18 years, were recruited from a nationwide survey study. They comprised 83 Chinese, 35 Malays and 71 Indians. Eighty-nine subjects had a rhinoscopically normal nose (Group 1), 77 had significant septal deviation (Group 2) and 23 had inferior turbinate hypertrophy (Group 3). AR was performed to measure the MCA at the anterior 1-5 cm from the nostril and the volume (V) between points at the nostril and 5 cm into the nose. A mean MCA (mMCA; equal to (L + R)/2) and a total volume (Vt; equal to L + R) were then calculated for each subject, where L and R refer to the measurements made for the left and right nostrils, respectively. The results showed that there was no statistically significant difference in mMCA (p = 0.80) and Vt (p = 0.60) among the three ethnic subgroups of Group 1. Statistically significant differences were found only between Groups 1 and 3 (p < 0.001 for both mMCA and Vt) and between Groups 2 and 3 (p = 0.001 for mMCA and p = 0.013 for Vt). Although there was no significant difference between Groups 1 and 2, significant differences in MCA (p = 0.001) and V (p = 0.040) were found between the narrower sides (smaller volume) and the wider sides in Group 2, indicating volume compensation between the nasal cavities. In conclusion, our study demonstrates that there is no significant difference in the normal range of AR measurements among Chinese, Malay and Indian ethnic groups. AR is able to determine the structural abnormality of the internal nasal cavity caused by septal deviation and inferior turbinate hypertrophy.
Long-term exposure to urban dust containing potentially toxic elements (PTEs) poses detrimental impacts on human health. However, studies estimating human health risks in urban dusts from a global perspective are scarce. We evaluated data for twelve PTEs in urban dusts across 59 countries from 463 published articles, including their concentrations, input sources, and probabilistic risks to human health. We found that 34.1 and 60.3% of those investigated urban dusts have been heavily contaminated with As and Cd, respectively. The input of PTEs was significantly correlated with economic structure due to emissions of industrial activities and traffic emissions being the major sources. Based on the Monte Carlo simulation, we found that the mean hazard index below the safe threshold (1.0) could still cause non-negligible risks to human health. Arsenic and Cr were the major PTEs threatening human health, and relatively high risk levels were observed in cities in China, Korea, Chile, Malaysia, and Australia. Importantly, our analysis suggested that PTEs threaten the health of approximately 92 million adults and 280 million children worldwide. Overall, our study provides important foundational understanding and guidance for policy decision-making to reduce the potential risks associated with PTE exposure and to promote sustainable development of urban economies.