Displaying all 2 publications

Abstract:
Sort:
  1. Dumbre DK, Mozammel T, Selvakannan P, Hamid SB, Choudhary VR, Bhargava SK
    J Colloid Interface Sci, 2015 Mar 1;441:52-8.
    PMID: 25490562 DOI: 10.1016/j.jcis.2014.11.018
    Thermal decomposition of co-precipitated Ni-Fe-HT materials led to the formation a mesoporous Ni-Fe-HT catalyst and we have demonstrated here its active role as solid and active catalyst for the Knoevenagel condensation reaction of various aldehydes with active methylene compounds (R-CH2-CN, where R=CN or CO2Et). High product yields are obtained at moderate temperature under solvent-free conditions and the catalyst can be easily separated from the reaction mixture, simply by filtration and reused several times without a significant loss of its activity. Since these mesoporous metal oxides derived from the NiFe hydrotalcites, their basicity mediated abstraction of the acidic protons from the active methylene compounds was responsible for their catalytic activity under solvent-free conditions.
  2. Nizamuddin S, Qureshi SS, Baloch HA, Siddiqui MTH, Takkalkar P, Mubarak NM, et al.
    Materials (Basel), 2019 Jan 28;12(3).
    PMID: 30696042 DOI: 10.3390/ma12030403
    The process parameters of microwave-induced hydrothermal carbonization (MIHTC) play an important role on the hydrothermal chars (hydrochar) yield. The effect of reaction temperature, reaction time, particle size and biomass to water ratio was optimized for hydrochar yield by modeling using the central composite design (CCD). Further, the rice straw and hydrochar at optimum conditions have been characterized for energy, chemical, structural and thermal properties. The optimum condition for hydrochar synthesis was found to be at a 180 °C reaction temperature, a 20 min reaction time, a 1:15 weight per volume (w/v) biomass to water ratio and a 3 mm particle size, yielding 57.9% of hydrochar. The higher heating value (HHV), carbon content and fixed carbon values increased from 12.3 MJ/kg, 37.19% and 14.37% for rice straw to 17.6 MJ/kg, 48.8% and 35.4% for hydrochar. The porosity, crystallinity and thermal stability of the hydrochar were improved remarkably compared to rice straw after MIHTC. Two characteristic peaks from XRD were observed at 2θ of 15° and 26°, whereas DTG peaks were observed at 50⁻150 °C and 300⁻350 °C for both the materials. Based on the results, it can be suggested that the hydrochar could be potentially used for adsorption, carbon sequestration, energy and agriculture applications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links