Displaying all 5 publications

Abstract:
Sort:
  1. Lean QY, Eri RD, Fitton JH, Patel RP, Gueven N
    PLoS One, 2015;10(6):e0128453.
    PMID: 26083103 DOI: 10.1371/journal.pone.0128453
    Inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, are an important cause of morbidity and impact significantly on quality of life. Overall, current treatments do not sustain a long-term clinical remission and are associated with adverse effects, which highlight the need for new treatment options. Fucoidans are complex sulphated, fucose-rich polysaccharides, found in edible brown algae and are described as having multiple bioactivities including potent anti-inflammatory effects. Therefore, the therapeutic potential of two different fucoidan preparations, fucoidan-polyphenol complex (Maritech Synergy) and depyrogenated fucoidan (DPF) was evaluated in the dextran sulphate sodium (DSS) mouse model of acute colitis. Mice were treated once daily over 7 days with fucoidans via oral (Synergy or DPF) or intraperitoneal administration (DPF). Signs and severity of colitis were monitored daily before colons and spleens were collected for macroscopic evaluation, cytokine measurements and histology. Orally administered Synergy and DPF, but not intraperitoneal DPF treatment, significantly ameliorated symptoms of colitis based on retention of body weight, as well as reduced diarrhoea and faecal blood loss, compared to the untreated colitis group. Colon and spleen weight in mice treated with oral fucoidan was also significantly lower, indicating reduced inflammation and oedema. Histological examination of untreated colitis mice confirmed a massive loss of crypt architecture and goblet cells, infiltration of immune cells and oedema, while all aspects of this pathology were alleviated by oral fucoidan. Importantly, in this model, the macroscopic changes induced by oral fucoidan correlated significantly with substantially decreased production of at least 15 pro-inflammatory cytokines by the colon tissue. Overall, oral fucoidan preparations significantly reduce the inflammatory pathology associated with DSS-induced colitis and could therefore represent a novel nutraceutical option for the management of IBD.
  2. Lean QY, Gueven N, Eri RD, Bhatia R, Sohal SS, Stewart N, et al.
    Expert Rev Clin Pharmacol, 2015;8(6):795-811.
    PMID: 26308504 DOI: 10.1586/17512433.2015.1082425
    Current drug therapies for ulcerative colitis (UC) are not completely effective in managing moderate-to-severe UC and approximately 20% of patients with severe UC require surgical interventions. Heparins, polydisperse mixtures of non-anticoagulant and anticoagulant oligosaccharides, are widely used as anticoagulants. However, heparins are also reported to have anti-inflammatory properties. Unfractionated heparin was initially used in patients with UC for the treatment of rectal microthrombi. Surprisingly, it was found to be effective in reducing UC-associated symptoms. Since then, several pre-clinical and clinical studies have reported promising outcomes of heparins in UC. In contrast, some controlled clinical trials demonstrated no or only limited benefits, thus the potential of heparins for the treatment of UC remains uncertain. This review discusses potential mechanisms of action of heparins, as well as proposed reasons for their contradictory clinical effectiveness in the treatment of UC.
  3. Lean QY, Eri RD, Randall-Demllo S, Sohal SS, Stewart N, Peterson GM, et al.
    PLoS One, 2015;10(7):e0134259.
    PMID: 26218284 DOI: 10.1371/journal.pone.0134259
    Inflammatory bowel diseases, such as ulcerative colitis, cause significant morbidity and decreased quality of life. The currently available treatments are not effective in all patients, can be expensive and have potential to cause severe side effects. This prompts the need for new treatment modalities. Enoxaparin, a widely used antithrombotic agent, is reported to possess anti-inflammatory properties and therefore we evaluated its therapeutic potential in a mouse model of colitis. Acute colitis was induced in male C57BL/6 mice by administration of dextran sulfate sodium (DSS). Mice were treated once daily with enoxaparin via oral or intraperitoneal administration and monitored for colitis activities. On termination (day 8), colons were collected for macroscopic evaluation and cytokine measurement, and processed for histology and immunohistochemistry. Oral but not intraperitoneal administration of enoxaparin significantly ameliorated DSS-induced colitis. Oral enoxaparin-treated mice retained their body weight and displayed less diarrhea and fecal blood loss compared to the untreated colitis group. Colon weight in enoxaparin-treated mice was significantly lower, indicating reduced inflammation and edema. Histological examination of untreated colitis mice showed a massive loss of crypt architecture and goblet cells, infiltration of immune cells and the presence of edema, while all aspects of this pathology were alleviated by oral enoxaparin. Reduced number of macrophages in the colon of oral enoxaparin-treated mice was accompanied by decreased levels of pro-inflammatory cytokines. Oral enoxaparin significantly reduces the inflammatory pathology associated with DSS-induced colitis in mice and could therefore represent a novel therapeutic option for the management of ulcerative colitis.
  4. Chong WC, Chellappan DK, Shukla SD, Peterson GM, Patel RP, Jha NK, et al.
    Viruses, 2021 Jul 18;13(7).
    PMID: 34372603 DOI: 10.3390/v13071397
    The recent coronavirus disease 2019 (COVID-19) outbreak has drawn global attention, affecting millions, disrupting economies and healthcare modalities. With its high infection rate, COVID-19 has caused a colossal health crisis worldwide. While information on the comprehensive nature of this infectious agent, SARS-CoV-2, still remains obscure, ongoing genomic studies have been successful in identifying its genomic sequence and the presenting antigen. These may serve as promising, potential therapeutic targets in the effective management of COVID-19. In an attempt to establish herd immunity, massive efforts have been directed and driven toward developing vaccines against the SARS-CoV-2 pathogen. This review, in this direction, is aimed at providing the current scenario and future perspectives in the development of vaccines against SARS-CoV-2.
  5. Corrie L, Singh H, Gulati M, Vishwas S, Chellappan DK, Gupta G, et al.
    PMID: 38507103 DOI: 10.1007/s00210-024-03029-3
    The gut microbiome is involved in the pathogenesis of many diseases including polycystic ovarian syndrome (PCOS). Modulating the gut microbiome can lead to eubiosis and treatment of various metabolic conditions. However, there is no proper study assessing the delivery of microbial technology for the treatment of such conditions. The present study involves the development of guar gum-pectin-based solid self-nanoemulsifying drug delivery system (S-SNEDDS) containing curcumin (CCM) and fecal microbiota extract (FME) for the treatment of PCOS. The optimized S-SNEDDS containing FME and CCM was prepared by dissolving CCM (25 mg) in an isotropic mixture consisting of Labrafil M 1944 CS, Transcutol P, and Tween-80 and solidified using lactose monohydrate, aerosil-200, guar gum, and pectin (colon-targeted CCM solid self-nanoemulsifying drug delivery system [CCM-CT-S-SNEDDS]). Pharmacokinetic and pharmacodynamic evaluation was carried out on letrozole-induced female Wistar rats. The results of pharmacokinetic studies indicated about 13.11 and 23.48-fold increase in AUC of CCM-loaded colon-targeted S-SNEDDS without FME (CCM-CT-S-SNEDDS (WFME)) and CCM-loaded colon-targeted S-SNEDDS with FME [(CCM-CT-S-SNEDDS (FME)) as compared to unprocessed CCM. The pharmacodynamic study indicated excellent recovery/reversal in the rats treated with CCM-CT-S-SNEDDS low and high dose containing FME (group 13 and group 14) in a dose-dependent manner. The developed formulation showcasing its improved bioavailability, targeted action, and therapeutic activity in ameliorating PCOS can be utilized as an adjuvant therapy for developing a dosage form, scale-up, and technology transfer.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links