Coastal habitats are exposed to increasing pressure of nanopollutants commonly combined with warming due to the seasonal temperature cycles and global climate change. To investigate the toxicological effects of TiO2 nanoparticles (TiO2 NPs) and elevated temperature on the intestinal health of the mussels (Mytilus coruscus), the mussels were exposed to 0.1 mg/L TiO2 NPs with different crystal structures for 14 days at 20 °C and 28 °C, respectively. Compared to 20 °C, the agglomeration of TiO2 NPs was more serious at 28 °C. Exposure to TiO2 NPs led to elevated mortality of M. coruscus and modified the intestinal microbial community as shown by 16S rRNA sequence analysis. Exposure to TiO2 NPs changed the relative abundance of Bacteroidetes, Proteobacteria and Firmicutes. The relative abundances of putative mutualistic symbionts Tenericutes and Fusobacteria increased in the gut of M. coruscus exposed to anatase, which have contributed to the lower mortality in this group. LEfSe showed the combined stress of warming and TiO2 NPs increased the risk of M. coruscus being infected with potential pathogenic bacteria. This study emphasizes the toxicity differences between crystal structures of TiO2 NPs, and will provides an important reference for analyzing the physiological and ecological effects of nanomaterial pollution on bivalves under the background of global climate change.
With the development of industry, agriculture and intensification of human activities, a large amount of nano-TiO2 dioxide and pentachlorophenol have entered aquatic environment, causing potential impacts on the health of aquatic animals and ecosystems. We investigated the effects of predators, pentachlorophenol (PCP) and nano titanium dioxide (nano-TiO2) on the gut health (microbiota and digestive enzymes) of the thick-shelled mussel Mytilus coruscus. Nano-TiO2, as the photocatalyst for PCP, enhanced to toxic effects of PCP on the intestinal health of mussels, and they made the mussels more vulnerable to the stress from predators. Nano-TiO2 particles with smaller size exerted a larger negative effect on digestive enzymes, whereas the size effect on gut bacteria was insignificant. The presence of every two of the three factors significantly affected the population richness and diversity of gut microbiota. Our findings revealed that the presence of predators, PCP, and nano-TiO2 promoted the proliferation of pathogenic bacteria and inhibited digestive enzyme activity. This research investigated the combined stress on marine mussels caused by nanoparticles and pesticides in the presence of predators and established a theoretical framework for explaining the adaptive mechanisms in gut microbes and the link between digestive enzymes and gut microbiota.
Pollution with anthropogenic contaminants including antibiotics and nanoplastics leads to gradual deterioration of the marine environment, which threatens endangered species such as the horseshoe crab Tachypleus tridentatus. We assessed the potential toxic mechanisms of an antibiotic (norfloxacin, 0, 0.5, 5 μg/L) and polystyrene nanoparticles (104 particles/L) in T. tridentatus using biomarkers of tissue redox status, molting, and gut microbiota. Exposure to single and combined pollutants led to disturbance of redox balance during short-term (7 days) exposure indicated by elevated level of a lipid peroxidation product, malondialdehyde (MDA). After prolonged (14-21 days) exposure, compensatory upregulation of antioxidants (catalase and glutathione but not superoxide dismutase) was observed, and MDA levels returned to the baseline in most experimental exposures. Transcript levels of molting-related genes (ecdysone receptor, retinoic acid X alpha receptor and calmodulin A) and a molecular chaperone (cognate heat shock protein 70) showed weak evidence of response to polystyrene nanoparticles and norfloxacin. The gut microbiota T. tridentatus was altered by exposures to norfloxacin and polystyrene nanoparticles shown by elevated relative abundance of Bacteroidetes. At the functional level, evidence of suppression by norfloxacin and polystyrene nanoparticles was found in multiple intestinal microbiome pathways related to the genetic information processing, metabolism, organismal systems, and environmental information processing. Future studies are needed to assess the physiological and health consequences of microbiome dysbiosis caused by norfloxacin and polystyrene nanoparticles and assist the environmental risk assessment of these pollutants in the wild populations of the horseshoe crabs.
Nano-TiO2 can act as a vector to organic compounds, such as pentachlorophenol (PCP) posing a potential threat to the marine ecosystems. Studies showed that nano pollutant toxicity can be modulated by abiotic factors, but little is known about the potential influence of biotic stressors (such as predators) on the physiological responses to pollutants in marine organisms. We explored the effects of n-TiO2 and PCP on the mussel Mytilus coruscus in the presence of its natural predator, the swimming crab Portunus trituberculatus. Exposure to n-TiO2, PCP, and predation risk showed interactive effects on antioxidant and immune parameters of the mussels. Elevated activities of catalase (CAT), glutathione peroxidase (GPX), acid phosphatase (ACP) and alkaline phosphatase (AKP), suppressed activity of superoxide dismutase (SOD), lower levels of glutathione (GSH) and increased malondialdehyde (MDA) levels indicated dysregulation of the antioxidant system and immune stress induced by single PCP or n-TiO2 exposure. Integrated biomarker (IBR) response values showed the effect of PCP was concentration dependent. Of the two used n-TiO2 sizes (25 and 100 nm), larger particles induced higher antioxidant and immune disturbances indicating higher toxicity possibly due to higher bioavailability. Compared to single PCP exposure, the combination of n-TiO2 and PCP enhanced the imbalance of SOD/CAT and GSH/GPX and led to elevated oxidative lesions and activation of immune-related enzymes. Overall, the combined impacts of pollutants and biotic stress exhibited a greater magnitude of adverse effects on antioxidant defense and immune parameters in mussels. The toxicological effects of PCP were exacerbated in the presence of n-TiO2, and the deleterious impact of these stressors was further amplified under predator-induced risk after prolonged (28 days) exposure. However, the underlying physiological regulatory mechanisms governing the interplay of these stressors and predatory cues on mussels remain elusive, warranting further investigation.