Displaying all 2 publications

Abstract:
Sort:
  1. Pillay R, Hua F, Loiselle BA, Bernard H, Fletcher RJ
    Ecol Evol, 2018 Aug;8(16):8231-8242.
    PMID: 30250698 DOI: 10.1002/ece3.4352
    Tropical forest degradation is a global environmental issue. In degraded forests, seedling recruitment of canopy trees is vital for forest regeneration and recovery. We investigated how selective logging, a pervasive driver of tropical forest degradation, impacts canopy tree seedling recruitment, focusing on an endemic dipterocarp Dryobalanops lanceolata in Sabah, Borneo. During a mast-fruiting event in intensively logged and nearby unlogged forest, we examined four stages of the seedling recruitment process: seed production, seed predation, and negative density-dependent germination and seedling survival. Our results suggest that each stage of the seedling recruitment process is altered in logged forest. The seed crop of D. lanceolata trees in logged forest was one-third smaller than that produced by trees in unlogged forest. The functional role of vertebrates in seed predation increased in logged forest while that of non-vertebrates declined. Seeds in logged forest were less likely to germinate than those in unlogged forest. Germination increased with local-scale conspecific seed density in unlogged forest, but seedling survival tended to decline. However, both germination and seedling survival increased with local-scale conspecific seed density in logged forest. Notably, seed crop size, germination, and seedling survival tended to increase for larger trees in both unlogged and logged forests, suggesting that sustainable timber extraction and silvicultural practices designed to minimize damage to the residual stand are important to prevent seedling recruitment failure. Overall, these impacts sustained by several aspects of seedling recruitment in a mast-fruiting year suggest that intensive selective logging may affect long-term population dynamics of D. lanceolata. It is necessary to establish if other dipterocarp species, many of which are threatened by the timber trade, are similarly affected in tropical forests degraded by intensive selective logging.
  2. Ewers RM, Orme CDL, Pearse WD, Zulkifli N, Yvon-Durocher G, Yusah KM, et al.
    Nature, 2024 Jul;631(8022):808-813.
    PMID: 39020163 DOI: 10.1038/s41586-024-07657-w
    Logged and disturbed forests are often viewed as degraded and depauperate environments compared with primary forest. However, they are dynamic ecosystems1 that provide refugia for large amounts of biodiversity2,3, so we cannot afford to underestimate their conservation value4. Here we present empirically defined thresholds for categorizing the conservation value of logged forests, using one of the most comprehensive assessments of taxon responses to habitat degradation in any tropical forest environment. We analysed the impact of logging intensity on the individual occurrence patterns of 1,681 taxa belonging to 86 taxonomic orders and 126 functional groups in Sabah, Malaysia. Our results demonstrate the existence of two conservation-relevant thresholds. First, lightly logged forests (<29% biomass removal) retain high conservation value and a largely intact functional composition, and are therefore likely to recover their pre-logging values if allowed to undergo natural regeneration. Second, the most extreme impacts occur in heavily degraded forests with more than two-thirds (>68%) of their biomass removed, and these are likely to require more expensive measures to recover their biodiversity value. Overall, our data confirm that primary forests are irreplaceable5, but they also reinforce the message that logged forests retain considerable conservation value that should not be overlooked.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links