Displaying all 2 publications

Abstract:
Sort:
  1. Asha BR, Goudanavar P, Koteswara Rao GSN, Gandla K, Raghavendra Naveen N, Majeed S, et al.
    Saudi Pharm J, 2023 Sep;31(9):101711.
    PMID: 37564747 DOI: 10.1016/j.jsps.2023.101711
    Inhaling drugs, on the other hand, is limited mainly by the natural mechanisms of the respiratory system, which push drug particles out of the lungs or make them inefficient once they are there. Because of this, many ways have been found to work around the problems with drug transport through the lungs. Researchers have made polymeric microparticles (MP) and nanoparticles as a possible way to get drugs into the lungs. They showed that the drug could be trapped in large amounts and retained in the lungs for a long time, with as little contact as possible with the bloodstream. MP were formulated in this study to get dexamethasone (DMC) into the pulmonary area. The Box-Behnken design optimized microspheres preparation to meet the pulmonary delivery prerequisites. Optimized formulation was figured out based on the desirability approach. The mass median aerodynamic diameter (MMAD) of the optimized formula (O-DMC-MP) was 8.46 ± 1.45 µm, and the fine particle fraction (FPF) was 77.69 ± 1.26%. This showed that it made suitable drug delivery system, which could make it possible for MP to settle deeply in the lung space after being breathed in. With the first burst of drug release, it was seen that drug release could last up to 16 h. Also, there was no clear sign that the optimized formulation was toxic to the alveoli basal epithelial cells in the lungs, as supported by cytotoxic studies in HUVEC, A549, and H1299 cell lines. Most importantly, loading DMC inside MP cuts the amount of drug into the bloodstream compared to plain DMC, as evident from biodistribution studies. Stability tests have shown that the product can stay the same over time at both the storage conditions. Using chitosan DMC-MP can be a better therapeutic formulation to treat acute respiratory distress syndrome (ARDS).
  2. Gandla K, Islam F, Zehravi M, Karunakaran A, Sharma I, Haque MA, et al.
    Heliyon, 2023 Sep;9(9):e19454.
    PMID: 37662819 DOI: 10.1016/j.heliyon.2023.e19454
    P-glycoprotein (P-gp) is known as the "multidrug resistance protein" because it contributes to tumor resistance to several different classes of anticancer drugs. The effectiveness of such polymers in treating cancer and delivering drugs has been shown in a wide range of in vitro and in vivo experiments. The primary objective of the present study was to investigate the inhibitory effects of several naturally occurring polymers on P-gp efflux, as it is known that P-gp inhibition can impede the elimination of medications. The objective of our study is to identify polymers that possess the potential to inhibit P-gp, a protein involved in drug resistance, with the aim of enhancing the effectiveness of anticancer drug formulations. The ADMET profile of all the selected polymers (Agarose, Alginate, Carrageenan, Cyclodextrin, Dextran, Hyaluronic acid, and Polysialic acid) has been studied, and binding affinities were investigated through a computational approach using the recently released crystal structure of P-gp with PDB ID: 7O9W. The advanced computational study was also done with the help of molecular dynamics simulation. The aim of the present study is to overcome MDR resulting from the activity of P-gp by using such polymers that can inhibit P-gp when used in formulations. The docking scores of native ligand, Agarose, Alginate, Carrageenan, Chitosan, Cyclodextrin, Dextran, Hyaluronic acid, and Polysialic acid were found to be -10.7, -8.5, -6.6, -8.7, -8.6, -24.5, -6.7, -8.3, and -7.9, respectively. It was observed that, Cyclodextrin possess multiple properties in drug delivery science and here also demonstrated excellent binding affinity. We propose that drug efflux-related MDR may be prevented by the use of Agarose, Carregeenan, Chitosan, Cyclodextrin, Hyaluronic acid, and/or Polysialic acid in the administration of anticancer drugs.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links