Displaying all 2 publications

Abstract:
Sort:
  1. Gholami H, Mohammadifar A, Golzari S, Song Y, Pradhan B
    Sci Total Environ, 2023 Dec 15;904:166960.
    PMID: 37696396 DOI: 10.1016/j.scitotenv.2023.166960
    Gully erosion possess a serious hazard to critical resources such as soil, water, and vegetation cover within watersheds. Therefore, spatial maps of gully erosion hazards can be instrumental in mitigating its negative consequences. Among the various methods used to explore and map gully erosion, advanced learning techniques, especially deep learning (DL) models, are highly capable of spatial mapping and can provide accurate predictions for generating spatial maps of gully erosion at different scales (e.g., local, regional, continental, and global). In this paper, we applied two DL models, namely a simple recurrent neural network (RNN) and a gated recurrent unit (GRU), to map land susceptibility to gully erosion in the Shamil-Minab plain, Hormozgan province, southern Iran. To address the inherent black box nature of DL models, we applied three novel interpretability methods consisting of SHaply Additive explanation (SHAP), ceteris paribus and partial dependence (CP-PD) profiles and permutation feature importance (PFI). Using the Boruta algorithm, we identified seven important features that control gully erosion: soil bulk density, clay content, elevation, land use type, vegetation cover, sand content, and silt content. These features, along with an inventory map of gully erosion (based on a 70 % training dataset and 30 % test dataset), were used to generate spatial maps of gully erosion using DL models. According to the Kolmogorov-Smirnov (KS) statistic performance assessment measure, the simple RNN model (with KS = 91.6) outperformed the GRU model (with KS = 66.6). Based on the results from the simple RNN model, 7.4 %, 14.5 %, 18.9 %, 31.2 % and 28 % of total area of the plain were classified as very-low, low, moderate, high and very-high hazard classes, respectively. According to SHAP plots, CP-PD profiles, and PFI measures, soil silt content, vegetation cover (NDVI) and land use type had the highest impact on the model's output. Overall, the DL modelling techniques and interpretation methods used in this study proved to be helpful in generating spatial maps of soil erosion hazard, especially gully erosion. Their interpretability can support watershed sustainable management.
  2. Mohammadi-Raigani Z, Gholami H, Mohamadifar A, Samani AN, Pradhan B
    PMID: 38656723 DOI: 10.1007/s11356-024-33290-1
    The prediction of suspended sediment load (SSL) within riverine systems is critical to understanding the watershed's hydrology. Therefore, the novelty of our research is developing an interpretable (explainable) model based on deep learning (DL) and Shapley Additive ExPlanations (SHAP) interpretation technique for prediction of SSL in the riverine systems. This paper investigates the abilities of four DL models, including dense deep neural networks (DDNN), long short-term memory (LSTM), gated recurrent unit (GRU), and simple recurrent neural network (RNN) models for the prediction of daily SSL using river discharge and rainfall data at a daily time scale in the Taleghan River watershed, northwestern Tehran, Iran. The performance of models was evaluated by using several quantitative and graphical criteria. The effect of parameter settings on the performance of deep models on SSL prediction was also investigated. The optimal optimization algorithms, maximum iteration (MI), and batch size (BC) were obtained for modeling daily SSL, and structure of the model impact on prediction remarkably. The comparison of prediction accuracy of the models illustrated that DDNN (with R2 = 0.96, RMSE = 333.46) outperformed LSTM (R2 = 0.75, RMSE = 786.20), GRU (R2 = 0.73, RMSE = 825.67), and simple RNN (R2 = 0.78, RMSE = 741.45). Furthermore, the Taylor diagram confirmed that DDNN has the highest performance among other models. Interpretation techniques can address the black-box nature of models, and here, SHAP was applied to develop an interpretable DL model to interpret of DL model's output. The results of SHAP showed that river discharge has the strongest impact on the model's output in estimating SSL. Overall, we conclude that DL models have great potential in watersheds to predict SSL. Therefore, different interpretation techniques as tools to interpret DL model's output (DL model is as black-box model) are recommended in future research.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links