Displaying all 6 publications

Abstract:
Sort:
  1. Chek MF, Hiroe A, Hakoshima T, Sudesh K, Taguchi S
    Appl Microbiol Biotechnol, 2019 Feb;103(3):1131-1141.
    PMID: 30511262 DOI: 10.1007/s00253-018-9538-8
    Polyhydroxyalkanoates (PHAs) are biopolymers synthesized by a wide range of bacteria, which serve as a promising candidate in replacing some conventional petrochemical-based plastics. PHA synthase (PhaC) is the key enzyme in the polymerization of PHA, and the crystal structures were successfully determined using the catalytic domain of PhaC from Cupriavidus necator (PhaCCn-CAT) and Chromobacterium sp. USM2 (PhaCCs-CAT). Here, we review the beneficial mutations discovered in PhaCs from a structural perspective. The structural comparison of the residues involved in beneficial mutation reveals that the residues are near to the catalytic triad, but not inside the catalytic pocket. For instance, Ala510 of PhaCCn is near catalytic His508 and may be involved in the open-close regulation, which presumably play an important role in substrate specificity and activity. In the class II PhaC1 from Pseudomonas sp. 61-3 (PhaC1Ps), Ser325 stabilizes the catalytic cysteine through hydrogen bonding. Another residue, Gln508 of PhaC1Ps is located in a conserved hydrophobic pocket which is next to the catalytic Asp and His. A class I, II-conserved Phe420 of PhaCCn is one of the residues involved in dimerization and its mutation to serine greatly reduced the lag phase. The current structural analysis shows that the Phe362 and Phe518 of PhaC from Aeromonas caviae (PhaCAc) are assisting the dimer formation and maintaining the integrity of the core beta-sheet, respectively. The structure-function relationship of PhaCs discussed in this review will serve as valuable reference for future protein engineering works to enhance the performance of PhaCs and to produce novel biopolymers.
  2. Chek MF, Kim SY, Mori T, Tan HT, Sudesh K, Hakoshima T
    iScience, 2020 May 22;23(5):101084.
    PMID: 32388399 DOI: 10.1016/j.isci.2020.101084
    Biodegradable polyester polyhydroxyalkanoate (PHA) is a promising bioplastic material for industrial use as a replacement for petroleum-based plastics. PHA synthase PhaC forms an active dimer to polymerize acyl moieties from the substrate acyl-coenzyme A (CoA) into PHA polymers. Here we present the crystal structure of the catalytic domain of PhaC from Chromobacterium sp. USM2, bound to CoA. The structure reveals an asymmetric dimer, in which one protomer adopts an open conformation bound to CoA, whereas the other adopts a closed conformation in a CoA-free form. The open conformation is stabilized by the asymmetric dimerization and enables PhaC to accommodate CoA and also to create the product egress path. The bound CoA molecule has its β-mercaptoethanolamine moiety extended into the active site with the terminal SH group close to active center Cys291, enabling formation of the reaction intermediate by acylation of Cys291.
  3. Tan HT, Chek MF, Lakshmanan M, Foong CP, Hakoshima T, Sudesh K
    Int J Biol Macromol, 2020 Sep 15;159:250-257.
    PMID: 32417540 DOI: 10.1016/j.ijbiomac.2020.05.064
    Among the various types of polyhydroxyalkanoate (PHA), poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] [P(3HB-co-3HHx)] has a high potential to serve as commercial bioplastic due to its striking resemblance to petroleum-based plastics. In this study, five different genotypes of Cupriavidusnecator transformants harbouring the phaCBP-M-CPF4 gene (including PHB¯4/pBBR1-CBP-M-CPF4) were developed to evaluate the efficiency of 3HHx monomer incorporation. The fraction of 3-hydroxyhexanoate (3HHx) monomer that was incorporated into the PHA synthesized by these C. necator transformants using palm oil as the sole carbon source, was examined. Overall, co-expression of enoyl-CoA hydratase gene (phaJ1) from Pseudomonas aeruginosa, along with PHA synthase (PhaC), increased the 3HHx composition in the PHA copolymer. The differences in the enzyme activities of β-ketothiolase (PhaACn) and NADPH-dependent acetoacetyl-CoA reductase (PhaBCn) of the C. necator mutant hosts used in this study, were observed to alter the 3HHx composition and molecular weight of the PHA copolymer produced. The 3HHx fractions in the P(3HB-co-3HHx) produced by these C. necator transformants ranged between 1 and 18 mol%, while the weight-average molecular weight ranged from 0.7 × 106 to 1.8 × 106 Da. PhaCBP-M-CPF4 displayed a typical initial lag-phase and a relatively low synthase activity in the in vitro enzyme assay, which is thought to be the reason for the higher molecular weights of PHA obtained in this study.
  4. Chek MF, Kim SY, Mori T, Arsad H, Samian MR, Sudesh K, et al.
    Sci Rep, 2017 07 13;7(1):5312.
    PMID: 28706283 DOI: 10.1038/s41598-017-05509-4
    Polyhydroxyalkanoate (PHA) is a promising candidate for use as an alternative bioplastic to replace petroleum-based plastics. Our understanding of PHA synthase PhaC is poor due to the paucity of available three-dimensional structural information. Here we present a high-resolution crystal structure of the catalytic domain of PhaC from Chromobacterium sp. USM2, PhaC Cs -CAT. The structure shows that PhaC Cs -CAT forms an α/β hydrolase fold comprising α/β core and CAP subdomains. The active site containing Cys291, Asp447 and His477 is located at the bottom of the cavity, which is filled with water molecules and is covered by the partly disordered CAP subdomain. We designated our structure as the closed form, which is distinct from the recently reported catalytic domain from Cupriavidus necator (PhaC Cn -CAT). Structural comparison showed PhaC Cn -CAT adopting a partially open form maintaining a narrow substrate access channel to the active site, but no product egress. PhaC Cs -CAT forms a face-to-face dimer mediated by the CAP subdomains. This arrangement of the dimer is also distinct from that of the PhaC Cn -CAT dimer. These findings suggest that the CAP subdomain should undergo a conformational change during catalytic activity that involves rearrangement of the dimer to facilitate substrate entry and product formation and egress from the active site.
  5. Lim H, Chuah JA, Chek MF, Tan HT, Hakoshima T, Sudesh K
    Int J Biol Macromol, 2021 Sep 01;186:414-423.
    PMID: 34246679 DOI: 10.1016/j.ijbiomac.2021.07.041
    Polyhydroxyalkanoates (PHAs) are biopolyesters synthesized by microorganisms as intracellular energy reservoirs under stressful environmental conditions. PHA synthase (PhaC) is the key enzyme responsible for PHA biosynthesis, but the importance of its N- and C-terminal ends still remains elusive. Six plasmid constructs expressing truncation variants of Aquitalea sp. USM4 PhaC (PhaC1As) were generated and heterologously expressed in Cupriavidus necator PHB-4. Removal of the first six residues at the N-terminus enabled the modulation of PHA composition without altering the PHA content in cells. Meanwhile, deletion of 13 amino acids from the C-terminus greatly affected the catalytic activity of PhaC1As, retaining only 1.1-7.4% of the total activity. Truncation(s) at the N- and/or C-terminus of PhaC1As gradually diminished the incorporation of comonomer units, and revealed that the N-terminal region is essential for PhaC1As dimerization whereas the C-terminal region is required for stabilization. Notably, transmission electron microscopy analysis showed that PhaC modification affected the morphology of intracellular PHA granules, which until now is only known to be regulated by phasins. This study provided substantial evidence and highlighted the significance of both the N- and C-termini of PhaC1As in regulating intracellular granule morphology, activity, substrate specificity, dimerization and stability of the synthase.
  6. Neoh SZ, Tan HT, Trakunjae C, Chek MF, Vaithanomsat P, Hakoshima T, et al.
    Microb Cell Fact, 2024 Feb 15;23(1):52.
    PMID: 38360657 DOI: 10.1186/s12934-024-02329-w
    BACKGROUND: Among the polyhydroxyalkanoate (PHA), poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] [P(3HB-co-3HHx)] is reported to closely resemble polypropylene and low-density polyethylene. Studies have shown that PHA synthase (PhaC) from mangrove soil (PhaCBP-M-CPF4) is an efficient PhaC for P(3HB-co-3HHx) production and N-termini of PhaCs influence its substrate specificity, dimerization, granule morphology, and molecular weights of PHA produced. This study aims to further improve PhaCBP-M-CPF4 through N-terminal truncation.

    RESULTS: The N-terminal truncated mutants of PhaCBP-M-CPF4 were constructed based on the information of the predicted secondary and tertiary structures using PSIPRED server and AlphaFold2 program, respectively. The N-terminal truncated PhaCBP-M-CPF4 mutants were evaluated in C. necator mutant PHB-4 based on the cell dry weight, PHA content, 3HHx molar composition, molecular weights, and granule morphology of the PHA granules. The results showed that most transformants harbouring the N-terminal truncated PhaCBP-M-CPF4 showed a reduction in PHA content and cell dry weight except for PhaCBP-M-CPF4 G8. PhaCBP-M-CPF4 G8 and A27 showed an improved weight-average molecular weight (Mw) of PHA produced due to lower expression of the truncated PhaCBP-M-CPF4. Transformants harbouring PhaCBP-M-CPF4 G8, A27, and T74 showed a reduction in the number of granules. PhaCBP-M-CPF4 G8 produced higher Mw PHA in mostly single larger PHA granules with comparable production as the full-length PhaCBP-M-CPF4.

    CONCLUSION: This research showed that N-terminal truncation had effects on PHA accumulation, substrate specificity, Mw, and granule morphology. This study also showed that N-terminal truncation of the amino acids that did not adopt any secondary structure can be an alternative to improve PhaCs for the production of PHA with higher Mw in mostly single larger granules.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links