Affiliations 

  • 1 Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia USM, 11800, Pulau Pinang, Malaysia
  • 2 Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
  • 3 Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia USM, 11800, Pulau Pinang, Malaysia; USM-RIKEN International Center for Aging Science (URICAS), School of Biological Sciences, Universiti Sains Malaysia USM, 11800, Pulau Pinang, Malaysia
  • 4 Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
  • 5 Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia USM, 11800, Pulau Pinang, Malaysia; USM-RIKEN International Center for Aging Science (URICAS), School of Biological Sciences, Universiti Sains Malaysia USM, 11800, Pulau Pinang, Malaysia. Electronic address: ksudesh@usm.my
Int J Biol Macromol, 2020 Sep 15;159:250-257.
PMID: 32417540 DOI: 10.1016/j.ijbiomac.2020.05.064

Abstract

Among the various types of polyhydroxyalkanoate (PHA), poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] [P(3HB-co-3HHx)] has a high potential to serve as commercial bioplastic due to its striking resemblance to petroleum-based plastics. In this study, five different genotypes of Cupriavidusnecator transformants harbouring the phaCBP-M-CPF4 gene (including PHB¯4/pBBR1-CBP-M-CPF4) were developed to evaluate the efficiency of 3HHx monomer incorporation. The fraction of 3-hydroxyhexanoate (3HHx) monomer that was incorporated into the PHA synthesized by these C. necator transformants using palm oil as the sole carbon source, was examined. Overall, co-expression of enoyl-CoA hydratase gene (phaJ1) from Pseudomonas aeruginosa, along with PHA synthase (PhaC), increased the 3HHx composition in the PHA copolymer. The differences in the enzyme activities of β-ketothiolase (PhaACn) and NADPH-dependent acetoacetyl-CoA reductase (PhaBCn) of the C. necator mutant hosts used in this study, were observed to alter the 3HHx composition and molecular weight of the PHA copolymer produced. The 3HHx fractions in the P(3HB-co-3HHx) produced by these C. necator transformants ranged between 1 and 18 mol%, while the weight-average molecular weight ranged from 0.7 × 106 to 1.8 × 106 Da. PhaCBP-M-CPF4 displayed a typical initial lag-phase and a relatively low synthase activity in the in vitro enzyme assay, which is thought to be the reason for the higher molecular weights of PHA obtained in this study.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.