Displaying publications 1 - 20 of 459 in total

Abstract:
Sort:
  1. Amirah Ahmad, Mohamed Rozali Othman
    The electrooxidation of propionaldehyde and butyraldehyde on a gold electrode was studied by cyclic voltammetry in alkaline media. Electrooxidation of both aldehydes showed the appearance of two anodic peaks. Another oxidation peak on a newly generated electrode surface was observed after the corresponding reduction peak for both aldehydes.
    Matched MeSH terms: Oxidation-Reduction
  2. Sadatullah S, Mohamed N, Razak F
    Ann Med Health Sci Res, 2014 Jul;4(4):526-31.
    PMID: 25221698 DOI: 10.4103/2141-9248.139301
    Ozone is an unstable gas, capable of oxidizing any biological entity. It is an effective bactericide in its gaseous as well as aqueous form.
    Matched MeSH terms: Oxidation-Reduction
  3. Salimon J, Salih N, Yousif E
    J Oleo Sci, 2011;60(12):613-8.
    PMID: 22123242
    Petroleum is a finite source as well as causing several environmental problems. Therefore petroleum needs to be replaced by alternative and sustainable sources. Plant oils and oleochemicals derived from them represent such alternative sources; the use of oleochemicals as biobased lubricants is of significant interest. This article presents a series of chemical modification on oleic acid to yield synthetic biolubricant basestocks. Measuring of density, volatility, cloud point (CP), pour point (PP), flash point (FP), viscosity index (VI), onset temperature (OT) and signal maximum temperature (SMT) was carried out for each compound. Furthermore, the friction and wear properties were measured using high-frequency reciprocating rig (HFRR). The results showed that octadecyl 9-octadecyloxy-10-hydroxyoctadecanoate exhibited the most favorable low-temperature performance (CP %ndash;26°C, PP %ndash;28°C) and the lowest ball wear scan diameter (42 µm) while propyl 9-propyloxy-10-hydroxyoctadecanoate exhibited the higher oxidation stability (OT 156°C).
    Matched MeSH terms: Oxidation-Reduction
  4. Norazah, M.A., Rahmani, M., Khozirah, S., Ismail, H.B.M., Sukari, M.A., Ali, A.M., et al.
    MyJurnal
    The extract of Cinnamomum microphyllum showed strong antioxidant activity when it was tested against auto-oxidation of linoleic acid, superoxide, and DPPH radical scavenging activity. Further detailed investigations of the plant constituents and bioactivity studies led to the isolation and identification of known compounds consisting of three lignans, a coumarin, an ester and β-sitosterol. The structures of the compounds were determined using detailed spectroscopic analysis. The lignans were found to possess a significant antioxidant activity when tested against the three assay systems.
    Matched MeSH terms: Oxidation-Reduction
  5. Azrina, A., Nurul Nadiah, M.N., Amin, I.
    MyJurnal
    The antioxidant properties of skin, flesh and kernel of Canarium odontophyllum fruit were determined. The methanolic extracts of the fruit were screened for their total phenolic content and antioxidant properties. The averaged antioxidant properties (mM TE/g FM) in skin, flesh, and kernel of Canarium odontophyllum were 16.46 ± 0.24, 20.54 ± 0.35, and 8.89 ± 0.29, respectively by DPPH assay; 151.24 ± 9.75, 70.58 ± 2.98, and 5.65 ± 0.02, respectively by FRAP assay; and 47.9 ± 0.00, 11.61 ± 1.14, and 3.00 ± 0.00, respectively by β-Carotene bleaching method. The averaged OH scavenging activity (mg DMSOE/mg FM) in skin, flesh, and kernel of Canarium odontophyllum were 43.33 ± 13.85, 7.81 ± 1.42, and 3.31 ± 0.80, respectively. While averaged total phenolic content (mg GAE/100g FM) were 387.5 ± 33.23, 267.0 ± 4.24, and 51.0 ± 0.00 for skin, flesh, and kernel respectively. Antioxidant activities were positively correlated with the total phenolic content (0.71 ≤ r ≤ 0.84).
    Matched MeSH terms: Oxidation-Reduction
  6. Nyam, K.L., Tan, C.H., Long, K.
    MyJurnal
    The aim of this study was to investigate the oxidative stability, antioxidant activity and fatty acid composition of 2 minutes microwave pre-treated kenaf seed oil (MKSO) in comparison with the untreated kenaf seed oil (KSO) under accelerated storage for 24 days. Results obtained on oxidative stability for both KSO and MKSO by the end of storage with PV were 9.83 meq O2 /kg and 8.97 meq O2 /kg, respectively; p-Anv were 17.28 and 13.48, respectively; TOTOX value of 36.94 and 31.42, respectively; IV value were measured 84.50 g of I2 / 100 g and 84.34 g of I2 / 100 g oil, respectively; FFA value of 5.67 mg KOH/100g oil and 5.14 mg KOH/100g oil, respectively. Aside from that, the antioxidant activity in MKSO was better than KSO. For the fatty acid composition, the oleic and linoleic acids were affected significantly throughout storage for both KSO and MKSO. MKSO presented a better overall oxidative stability, antioxidant activity and retained higher content of MUFA and PUFA significantly (p< 0.05) upon accelerated storage.
    Matched MeSH terms: Oxidation-Reduction
  7. Noor Hafizah, Y, Maskat, M. Y., Wan Aida, W. M., Maaruf, A. G.
    MyJurnal
    Storage study of mengkudu (Morinda citrifolia L.) extract was carried out to determine the effects
    of canning and storage period on pH, total polyphenol content, antioxidant activity, intensity of off-odour and aroma acceptance. Uncanned (control) and canned extract were stored for 0, 8, 16 and 24 weeks under room temperature. Results showed canning resulted in a significant (p
    Matched MeSH terms: Oxidation-Reduction
  8. Fatemeh, S. R., Saifullah, R., Abbas, F. M. A., Azhar, M. E.
    MyJurnal
    The influence of variety (Cavendish and Dream), stage of ripeness (green and ripe) and parts (pulp and peel) on antioxidative compounds and antioxidant activity of banana fruit was investigated. The TPC and TFC ranged widely from 75.01 to 685.57 mg GAE/100 g and 39.01 to 389.33 mg CEQ/100 g of dry matter respectively. Cavendish banana flour contained higher TPC and TFC compared to Dream variety. TPC and TFC values of banana peel were higher than those of banana pulp. Also, green banana showed higher TPC and TFC values than those of ripe fruit. Radical scavenging activities (inhibition of DPPH) of the extracts ranged from 26.55 to 52.66%. Although Dream banana peel extracts appeared to have low TPC and TFC, its antioxidant activities were ranked moderate to high. This implies that antioxidative compounds other than phenolics and flavonoids were probably responsible for inhibition of DPPH.
    Matched MeSH terms: Oxidation-Reduction
  9. Aminah, A., Anna, P.K.
    MyJurnal
    Momordica charantia is known to contain with antioxidant properties and bioactive compounds to lower of diabetic diseases. Objective this study was investigate the influence of ripening stages on the phenolic bioactive substances and the corresponding antioxidant activity of bitter melon (Momordica charantia). The ripening of bitter melon fruit divided to four stages (RS1, RS2, RS3 and RS4). The results of this study were more ripened the fruit, lightness (L * ), yellowish (b * ) and chroma increased. Other ways, more ripened the fruit, the pH value and titratable acidity decreased. Total phenolic content and FRAF of RS 4 was highest compared other samples but DPPH of RS 4 was lowest among all the samples. However DPPH and FRAP value of bitter gourd on ripening stages showed no significant difference (p>0.05) among samples.
    Matched MeSH terms: Oxidation-Reduction
  10. Muhammad Ridwan Fahmi, Che Zulzikrami Azner Abidin, Ong Sa, Abdul Haqi Ibrahim, Siti Nasuha Sabri, Nur Aqilah Razali, et al.
    Sains Malaysiana, 2018;47:1085-1091.
    Oxidation of p-Cresol was investigated by using ozonation process. The aim of this research is to assess the effectiveness
    of ozonation on oxidation of micropollutant such as p-Cresol. Ozonation performance was evaluated based on p-Cresol
    concentration reduction and chemical oxidation demand (COD) reduction. It was found ozonation at pH11 achieved
    the highest p-Cresol degradation, with 95.8% of p-Cresol reduced and 96.0% of COD reduced, for an initial 50 mgL-1
    of p-Cresol. The degradation of p-Cresol could be expressed by second-order of kinetic model. The second-order rate
    constant k increases as the initial pH increased, but decreases with the increasing of initial p-Cresol concentrations.
    Besides, the absorption spectra of p-Cresol over ozonation time were analyzed by spectrophotometry. The evolution of
    absorption spectra of p-Cresol degradation suggests that the oxidation of p-Cresol follows three stages mechanisms
    with cycloaddition as the first step to produce aromatic intermediates followed by ring-opening reactions, degradation
    of the intermediates, and subsequently achieved mineralization.
    Matched MeSH terms: Oxidation-Reduction
  11. Bao Y, Oh WD, Lim TT, Wang R, Webster RD, Hu X
    Water Res., 2019 03 15;151:64-74.
    PMID: 30594091 DOI: 10.1016/j.watres.2018.12.007
    In this work, nano-bimetallic Co/Fe oxides with different stoichiometric Co/Fe ratios were prepared using a novel one-step solution combustion method. The nano-bimetallic Co/Fe oxides were used for sulfamethoxazole (SMX) degradation via peroxymonosulfate (PMS) activation. The stoichiometric efficiencies of the as-prepared nano-bimetallic catalysts were calculated and compared for the first time. The radical generation was identified by electron paramagnetic resonance (EPR) as well as chemical quenching experiments, in which different scavengers were used and compared. The catalytic PMS activation mechanism in the presence of catalyst was examined by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The results showed that besides SO4•- and •OH, •OOH was also detected in the PMS/CoFeO2.5 system. Meanwhile, in addition to the previously proposed radical oxidation pathway, the results showed that SMX degradation also involved a non-radical oxidation, which could be verified by the degradation experiment without catalyst as well as the detection of 1O2. In the PMS activation process, cobalt functioned as the active site on CoFeO2.5 while Fe oxide functioned as the adsorption site. The electron transfer mechanism was proposed based on the XPS and metal leaching results. Additionally, via the detection of transformation products, different SMX transformation pathways involving nitration, hydroxylation and hydrolysis in the PMS/CoFeO2.5 system were proposed.
    Matched MeSH terms: Oxidation-Reduction
  12. Khor YP, Sim BI, Abas F, Lai OM, Wang Y, Nehdi IA, et al.
    J Sci Food Agric, 2019 Dec;99(15):6989-6997.
    PMID: 31414493 DOI: 10.1002/jsfa.9989
    BACKGROUND: Recycled oil has emerged as a significant food safety issue and poses a major threat to public health. To date, very limited studies have been conducted aiming to detect the adulteration of used and recycled palm olein in refined, bleached and deodorized palm olein (RBDPO). In the present study, oil samples that underwent controlled heating and deep-frying studies were refined using the common oil refining procedure to simulate the production of recycled oil. Polymerized triacylglycerol (PTG), oxidized monomeric triacylglycerols (oxTAGs), such as epoxy, keto and hydroxy acids, and caprylic acid have been proposed as potential indicators for tracking the adulteration of recycled oil.

    RESULTS: For PTG, triacylglycerol oligomers and dimers showed a significant increase (P 

    Matched MeSH terms: Oxidation-Reduction
  13. Lin CY, Turchyn AV, Krylov A, Antler G
    Geobiology, 2020 03;18(2):207-224.
    PMID: 31814266 DOI: 10.1111/gbi.12371
    We employ complementary field and laboratory-based incubation techniques to explore the geochemical environment where siderite concretions are actively forming and growing, including solid-phase analysis of the sediment, concretion, and associated pore fluid chemistry. These recently formed siderite concretions allow us to explore the geochemical processes that lead to the formation of this less common carbonate mineral. We conclude that there are two phases of siderite concretion growth within the sediment, as there are distinct changes in the carbon isotopic composition and mineralogy across the concretions. Incubated sediment samples allow us to explore the stability of siderite over a range of geochemical conditions. Our incubation results suggest that the formation of siderite can be very rapid (about two weeks or within 400 hr) when there is a substantial source of iron, either from microbial iron reduction or from steel material; however, a source of dissolved iron is not enough to induce siderite precipitation. We suggest that sufficient alkalinity is the limiting factor for siderite precipitation during microbial iron reduction while the lack of dissolved iron is the limiting factor for siderite formation if microbial sulfate reduction is the dominant microbial metabolism. We show that siderite can form via heated transformation (at temperature 100°C for 48 hr) of calcite and monohydrocalcite seeds in the presence of dissolved iron. Our transformation experiments suggest that the formation of siderite is promoted when carbonate seeds are present.
    Matched MeSH terms: Oxidation-Reduction
  14. Ashkan Shafiee, Muhamad Mat Salleh, Muhammad Yahaya
    HOMO and LUMO of organic compounds are basic parameters for the design and fabrication of an organic solar cell. This paper presents a technique to obtain HOMO and LUMO of an n-type polymer of [6,6]-phenyl C61-butyric acid 3-ethylthiophene ester (PCBE) and a p-type polymer of poly (3-octyl-thiophene-2, 5-diyl) (P3OT). The energy of band gap for each material has been calculated using optical absorption spectrum. Cyclic Voltammetry was used to estimate the oxidation potential and energy band diagram consequently. The experiments were carried out in a three-electrode cell consisting of a platinum working electrode, a platinum counter electrode and a SCE reference electrode. P3OT showed energy band gap equal to 1.83 eV with HOMO and LUMO equal to 5.59 eV and 3.76 eV, respectively. PCBE showed energy band gap equal to 1.96 eV with HOMO and LUMO equal to 5.87 eV and 3.91 eV, respectively. Based on energy band diagram that was constructed from this experimental result, the couple materials may be successfully used to fabricate the feasible organic solar cells.
    Matched MeSH terms: Oxidation-Reduction
  15. Balu S, Chen YL, Juang RC, Yang TC, Juan JC
    Environ Pollut, 2020 Dec;267:115491.
    PMID: 32911336 DOI: 10.1016/j.envpol.2020.115491
    Surface functionalization and shape modifications are the key strategies being utilized to overcome the limitations of semiconductors in advanced oxidation processes (AOP). Herein, the uniform α-Fe2O3 nanocrystals (α-Fe2O3-NCs) were effectively synthesized via a simple solvothermal route. Meanwhile, the sulfonic acid functionalization (SAF) and the impregnation of α-Fe2O3-NCs on g-C3N4 (α-Fe2O3-NCs@CN-SAF) were achieved through complete solvent evaporation technique. The surface functionalization of the sulfonic acid group on g-C3N4 accelerates the faster migration of electrons to the surface owing to robust electronegativity. The incorporation of α-Fe2O3-NCs with CN-SAF significantly enhances the optoelectronic properties, ultrafast spatial charge separation, and rapid charge transportation. The α-Fe2O3-HPs@CN-SAF and α-Fe2O3-NPs@CN-SAF nanocomposites attained 97.41% and 93.64% of Cr (VI) photoreduction in 10 min, respectively. The photocatalytic efficiency of α-Fe2O3-NCs@CN-SAF nanocomposite is 2.4 and 2.1 times higher than that of pure g-C3N4 and α-Fe2O3, respectively. Besides, the XPS, PEC and recycling experiments confirm the excellent photo-induced charge separation via Z-scheme heterostructure and cyclic stability of α-Fe2O3-NCs@CN-SAF nanocomposites.
    Matched MeSH terms: Oxidation-Reduction
  16. Sabow AB, Zulkifli I, Goh YM, Ab Kadir MZ, Kaka U, Imlan JC, et al.
    PLoS One, 2016;11(4):e0152661.
    PMID: 27035716 DOI: 10.1371/journal.pone.0152661
    The influence of pre-slaughter electrical stunning techniques and slaughter without stunning on bleeding efficiency and shelf life of chevon during a 14 d postmortem aging were assessed. Thirty two Boer crossbred bucks were randomly assigned to four slaughtering techniques viz slaughter without stunning (SWS), low frequency head-only electrical stunning (LFHO; 1 A for 3 s at a frequency of 50 Hz), low frequency head-to-back electrical stunning (LFHB; 1 A for 3 s at a frequency of 50 Hz) and high frequency head-to-back electrical stunning (HFHB; 1 A for 3 s at a frequency of 850 Hz). The SWS, LFHO and HFHB goats had higher (p<0.05) blood loss and lower residual hemoglobin in muscle compared to LFHB. The LFHB meat had higher (p<0.05) TBARS value than other treatments on d 7 and 14 d postmortem. Slaughtering methods had no effect on protein oxidation. Higher bacterial counts were observed in LFHB meat compared to those from SWS, LFHO and HFHB after 3 d postmortem. Results indicate that the low bleed-out in LFHB lowered the lipid oxidative stability and microbiological quality of chevon during aging.
    Matched MeSH terms: Oxidation-Reduction
  17. Hilles AH, Abu Amr SS, Hussein RA, Arafa AI, El-Sebaie OD
    Waste Manag, 2015 Oct;44:172-7.
    PMID: 26248486 DOI: 10.1016/j.wasman.2015.07.046
    The current study investigated the effects of S2O8(2-) and S2O8(2-)/H2O2 oxidation processes on the biodegradable characteristics of an anaerobic stabilized leachate. Total COD removal efficiency was found to be 46% after S2O8(2-) oxidation (using 4.2 g S2O8(2-)/1g COD0, at pH 7, for 60 min reaction time and at 350 rpm shaking speed), and improved to 81% following S2O8(2-)/H2O2 oxidation process (using 5.88 g S2O8(2-) dosage, 8.63 g H2O2 dosage, at pH 11 and for 120 min reaction time at 350 rpm). Biodegradability in terms of BOD5/COD ratio of the leachate enhanced from 0.09 to 0.1 and to 0.17 following S2O8(2-) and S2O8(2-)/H2O2 oxidation processes, respectively. The fractions of COD were determined before and after each oxidation processes (S2O8(2-) and S2O8(2-)/H2O2). The fraction of biodegradable COD(bi) increased from 36% in raw leachate to 57% and 68% after applying S2O8(2-) and S2O8(2-)/H2O2 oxidation, respectively. As for soluble COD(s), its removal efficiency was 39% and 78% following S2O8(2-) and S2O8(2-)/H2O2 oxidation, respectively. The maximum removal for particulate COD was 94% and was obtained after 120 min of S2O8(2-)/H2O2 oxidation. As a conclusion, S2O8(2-)/H2O2 oxidation could be an efficient method for improving the biodegradability of anaerobic stabilized leachate.
    Matched MeSH terms: Oxidation-Reduction
  18. Noor Atiqah, A.A.K., Maisarah, A.M., Asmah, R.
    MyJurnal
    The emerging studies suggest antioxidant may represent an important role in defence against certain diseases outlined the necessity of determining their contents in tamarillo (Cyphomandra betacea), cherry tomato (Solanum lycopersicum var. cerasiforme), and tomato (Lycopersicon esculentum). This study aims to determine the antioxidant capacity, total phenolic content and total flavonoid content in tamarillo, yellow cherry tomato, red cherry tomato, and tomato in 70% ethanol and water extracts. The ethanol extract showed the highest scavenging activity, ferric reducing activity, phenolic and flavonoid contents, whereas, the water extract showed higher value for antioxidant activity in β-Carotene bleaching assay. Tamarillo showed the highest antioxidant activity (22.92 ± 3.60%, 28.89 ± 3.85%), scavenging activity (44.25 ± 0.82 μg/ml, 47.38 ± 1.11 μg/ml), ferric reducing activity (12.17 ± 0.53 μM Fe (II)/g, 3.72 ± 0.20 μM Fe (II)/g), phenolic content (7.63 ± 0.37 mg GAE/g edible portion, 1.83 ± 0.50 mg GAE/g edible portion) and flavonoid content (6.44 ± 0.16 mg CE/g edible portion, 2.22 ± 0.31 mg CE/g edible portion) in ethanol and water extracts respectively. For ethanol extracts a positive correlations existed (0.66 ≤ r ≥ 0.97) between ferric reducing activity, antioxidant activity, phenolic content and flavonoid content. While, in water extract correlation test revealed a positive correlations between antioxidant activity, ferric reducing activity and phenolic content (0.645 ≤ r ≥ 0.706) and between antioxidant activity and flavonoid content (r = 0.820). In conclusion, tamarillo exhibits the highest antioxidant capacity, phenolic content and also flavonoid content.
    Matched MeSH terms: Oxidation-Reduction
  19. Al-Hardan NH, Abdul Hamid MA, Shamsudin R, Othman NK, Kar Keng L
    Sensors (Basel), 2016 Jun 29;16(7).
    PMID: 27367693 DOI: 10.3390/s16071004
    Zinc oxide (ZnO) nanorods (NRs) have been synthesized via the hydrothermal process. The NRs were grown over a conductive glass substrate. A non-enzymatic electrochemical sensor for hydrogen peroxide (H₂O₂), based on the prepared ZnO NRs, was examined through the use of current-voltage measurements. The measured currents, as a function of H₂O₂ concentrations ranging from 10 μM to 700 μM, revealed two distinct behaviours and good performance, with a lower detection limit (LOD) of 42 μM for the low range of H₂O₂ concentrations (first region), and a LOD of 143.5 μM for the higher range of H₂O₂ concentrations (second region). The prepared ZnO NRs show excellent electrocatalytic activity. This enables a measurable and stable output current. The results were correlated with the oxidation process of the H₂O₂ and revealed a good performance for the ZnO NR non-enzymatic H₂O₂ sensor.
    Matched MeSH terms: Oxidation-Reduction
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links