METHODS: The sample included 54,826 subjects (64.73% females; 34.15% males; 1.11% nonbinary gender) from 40 countries (COMET-G study). The analysis was based on the registration of previous history that could serve as a fair approximation for the lifetime prevalence of various medical conditions.
RESULTS: About 24.5% reported a history of somatic and 26.14% of mental disorders. Mental disorders were by far the most prevalent group of medical conditions. Comorbidity of any somatic with any mental disorder was reported by 8.21%. One-third to almost two-thirds of somatic patients were also suffering from a mental disorder depending on the severity and multicomorbidity. Bipolar and psychotic patients and to a lesser extent depressives, manifested an earlier (15-20 years) manifestation of somatic multicomorbidity, severe disability, and probably earlier death. The overwhelming majority of patients with mental disorders were not receiving treatment or were being treated in a way that was not recommended. Antipsychotics and antidepressants were not related to the development of metabolic syndrome.
CONCLUSIONS: The finding that one-third to almost two-thirds of somatic patients also suffered from a mental disorder strongly suggests that psychiatry is the field with the most trans-specialty and interdisciplinary value and application points to the importance of teaching psychiatry and mental health in medical schools and also to the need for more technocratically oriented training of psychiatric residents.
METHODS: Chi-square tests were used for initial screening to select only those variables which would show an initial significance. Risk Ratios (RR) were calculated, and a Multiple Backward Stepwise Linear Regression Analysis (MBSLRA) was followed with those variables given significant results at screening and with the presence of distress or depression or the lack of both of them.
RESULTS: The most important risk factors for depression were female (RR = 1.59-5.49) and non-binary gender (RR = 1.56-7.41), unemployment (RR = 1.41-6.57), not working during lockdowns (RR = 1.43-5.79), bad general health (RR = 2.74-9.98), chronic somatic disorder (RR = 1.22-5.57), history of mental disorders (depression RR = 2.31-9.47; suicide attempt RR = 2.33-9.75; psychosis RR = 2.14-10.08; Bipolar disorder RR = 2.75-12.86), smoking status (RR = 1.15-5.31) and substance use (RR = 1.77-8.01). The risk factors for distress or depression that survived MBSLRA were younger age, being widowed, living alone, bad general health, being a carer, chronic somatic disorder, not working during lockdowns, being single, self-reported history of depression, bipolar disorder, self-harm, suicide attempts and of other mental disorders, smoking, alcohol, and substance use.
CONCLUSIONS: Targeted preventive interventions are crucial to safeguard the mental health of vulnerable groups, emphasizing the importance of diverse samples in future research.
LIMITATIONS: Online data collection may have resulted in the underrepresentation of certain population groups.
MATERIALS AND METHODS: The data came from the larger COMET-G study. The study sample includes 12,792 health professionals from 40 countries (62.40% women aged 39.76 ± 11.70; 36.81% men aged 35.91 ± 11.00 and 0.78% non-binary gender aged 35.15 ± 13.03). Distress and clinical depression were identified with the use of a previously developed cut-off and algorithm, respectively.
STATISTICAL ANALYSIS: Descriptive statistics were calculated. Chi-square tests, multiple forward stepwise linear regression analyses, and Factorial Analysis of Variance (ANOVA) tested relations among variables.
RESULTS: Clinical depression was detected in 13.16% with male doctors and 'non-binary genders' having the lowest rates (7.89 and 5.88% respectively) and 'non-binary gender' nurses and administrative staff had the highest (37.50%); distress was present in 15.19%. A significant percentage reported a deterioration in mental state, family dynamics, and everyday lifestyle. Persons with a history of mental disorders had higher rates of current depression (24.64% vs. 9.62%; p