METHODS: This retrospective and multinational cohort study included all adult transferred injury patients from Korea, Malaysia, Vietnam, and Taiwan between 2016 and 2018. The outcome of interest was a death in the emergency department (ED) after the patients' ED visit. Using these results, we developed the interpretable field triage score with the Korea registry using an interpretable machine learning framework and validated the score externally. The performance of each country's score was assessed using the area under the receiver operating characteristic curve (AUROC). Furthermore, a website for real-world application was developed using R Shiny.
FINDINGS: The study population included 26,294, 9404, 673 and 826 transferred injury patients between 2016 and 2018 from Korea, Malaysia, Vietnam, and Taiwan, respectively. The corresponding rates of a death in the ED were 0.30%, 0.60%, 4.0%, and 4.6% respectively. Age and vital sign were found to be the significant variables for predicting mortality. External validation showed the accuracy of the model with an AUROC of 0.756-0.850.
INTERPRETATION: The Grade for Interpretable Field Triage (GIFT) score is an interpretable and practical tool to predict mortality in field triage for trauma.
FUNDING: This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (Grant Number: HI19C1328).