Displaying all 3 publications

Abstract:
Sort:
  1. Homayounfar M, Zomorodian M, Martinez CJ, Lai SH
    PLoS One, 2015;10(12):e0143198.
    PMID: 26641095 DOI: 10.1371/journal.pone.0143198
    So far many optimization models based on Nash Bargaining Theory associated with reservoir operation have been developed. Most of them have aimed to provide practical and efficient solutions for water allocation in order to alleviate conflicts among water users. These models can be discussed from two viewpoints: (i) having a discrete nature; and (ii) working on an annual basis. Although discrete dynamic game models provide appropriate reservoir operator policies, their discretization of variables increases the run time and causes dimensionality problems. In this study, two monthly based non-discrete optimization models based on the Nash Bargaining Solution are developed for a reservoir system. In the first model, based on constrained state formulation, the first and second moments (mean and variance) of the state variable (water level in the reservoir) is calculated. Using moment equations as the constraint, the long-term utility of the reservoir manager and water users are optimized. The second model is a dynamic approach structured based on continuous state Markov decision models. The corresponding solution based on the collocation method is structured for a reservoir system. In this model, the reward function is defined based on the Nash Bargaining Solution. Indeed, it is used to yield equilibrium in every proper sub-game, thereby satisfying the Markov perfect equilibrium. Both approaches are applicable for water allocation in arid and semi-arid regions. A case study was carried out at the Zayandeh-Rud river basin located in central Iran to identify the effectiveness of the presented methods. The results are compared with the results of an annual form of dynamic game, a classical stochastic dynamic programming model (e.g. Bayesian Stochastic Dynamic Programming model, BSDP), and a discrete stochastic dynamic game model (PSDNG). By comparing the results of alternative methods, it is shown that both models are capable of tackling conflict issues in water allocation in situations of water scarcity properly. Also, comparing the annual dynamic game models, the presented models result in superior results in practice. Furthermore, unlike discrete dynamic game models, the presented models can significantly reduce the runtime thereby avoiding dimensionality problems.
  2. Zomorodian M, Lai SH, Homayounfar M, Ibrahim S, Pender G
    PLoS One, 2017;12(12):e0188489.
    PMID: 29216200 DOI: 10.1371/journal.pone.0188489
    Conflicts over water resources can be highly dynamic and complex due to the various factors which can affect such systems, including economic, engineering, social, hydrologic, environmental and even political, as well as the inherent uncertainty involved in many of these factors. Furthermore, the conflicting behavior, preferences and goals of stakeholders can often make such conflicts even more challenging. While many game models, both cooperative and non-cooperative, have been suggested to deal with problems over utilizing and sharing water resources, most of these are based on a static viewpoint of demand points during optimization procedures. Moreover, such models are usually developed for a single reservoir system, and so are not really suitable for application to an integrated decision support system involving more than one reservoir. This paper outlines a coupled simulation-optimization modeling method based on a combination of system dynamics (SD) and game theory (GT). The method harnesses SD to capture the dynamic behavior of the water system, utilizing feedback loops between the system components in the course of the simulation. In addition, it uses GT concepts, including pure-strategy and mixed-strategy games as well as the Nash Bargaining Solution (NBS) method, to find the optimum allocation decisions over available water in the system. To test the capability of the proposed method to resolve multi-reservoir and multi-objective conflicts, two different deterministic simulation-optimization models with increasing levels of complexity were developed for the Langat River basin in Malaysia. The later is a strategic water catchment that has a range of different stakeholders and managerial bodies, which are however willing to cooperate in order to avoid unmet demand. In our first model, all water users play a dynamic pure-strategy game. The second model then adds in dynamic behaviors to reservoirs to factor in inflow uncertainty and adjust the strategies for the reservoirs using the mixed-strategy game and Markov chain methods. The two models were then evaluated against three performance indices: Reliability, Resilience and Vulnerability (R-R-V). The results showed that, while both models were well capable of dealing with conflict resolution over water resources in the Langat River basin, the second model achieved a substantially improved performance through its ability to deal with dynamicity, complexity and uncertainty in the river system.
  3. Zomorodian M, Lai SH, Homayounfar M, Ibrahim S, Fatemi SE, El-Shafie A
    J Environ Manage, 2018 Dec 01;227:294-304.
    PMID: 30199725 DOI: 10.1016/j.jenvman.2018.08.097
    In recent years, water resources management has become more complicated and controversial due to the impacts of various factors affecting hydrological systems. System Dynamics (SD) has in turn become increasingly popular due to its advantages as a tool for dealing with such complex systems. However, SD also has some limitations. This review contains a comprehensive survey of the existing literature on SD as a potential method to deal with the complexity of system integrated modeling, with a particular focus on the application of SD to the integrated modeling of water resources systems. It discusses the limitations of SD in these contexts, and highlights a number of studies which have applied a combination of SD and other methods to overcome these limitations. Finally, our study makes a number of recommendations for future modifications in the application of SD methods in order to enhance their performance.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links