Method: Total RNA was isolated from MSCs and MSCs-derived NPCs followed by cDNA library construction for transcriptomic analysis. Sample libraries that passed the quality and quantity assessments were subjected to high throughput mRNA sequencing using NextSeq®500. Differential gene expression analysis was performed using the DESeq2 R package with MSC samples being a reference group. The expression of eight differentially regulated genes was counter validated using real-time PCR.
Results: In total, of the 3,252 differentially regulated genes between MSCs and NPCs with two or more folds, 1,771 were upregulated genes, whereas 1,481 were downregulated in NPCs. Amongst these differential genes, 104 transcription factors were upregulated, and 45 were downregulated in NPCs. Neurogenesis related genes were upregulated in NPCs and the main non-redundant gene ontology (GO) terms enriched in NPCs were the autonomic nervous system, cell surface receptor signalling pathways), extracellular structure organisation, and programmed cell death. The main non-redundant GO terms enriched in MSCs included cytoskeleton organisation cytoskeleton structural constituent, mitotic cell cycle), and the mitotic cell cycle process Gene set enrichment analysis also confirmed cell cycle regulated pathways as well as Biocarta integrin pathway were upregulated in MSCs. Transcription factors enrichment analysis by ChEA3 revealed Foxs1 and HEYL, amongst the top five transcription factors, inhibits and enhances, respectively, the NPCs differentiation of MSCs.
Conclusions: The vast differences in the transcriptomic profiles between NPCs and MSCs revealed a set of markers that can identify the differentiation stage of NPCs as well as provide new targets to enhance MSCs differentiation into NPCs.
METHODS: Embryonic day 18 (E-18) rat hippocampus neurons were cultured with poly-L-lysine coated glass coverslips. Following optimisation, KA (0.5 μM), a chemoconvulsant agent, was administered at three different time-points (30, 60 and 90 min) to induce seizure in rat hippocampal neuronal cell culture. We examined cell viability, neurite outgrowth density and immunoreactivity of the hippocampus neuron culture by measuring brain derived neurotrophic factor (BDNF), γ-amino butyric acid A (GABAA) subunit α-1 (GABRA1), tyrosine receptor kinase B (TrkB), and inositol trisphosphate receptor (IP3R/IP3) levels.
RESULTS: The results revealed significantly decreased and increased immunoreactivity changes in TrkB (a BDNF receptor) and IP3R, respectively, at 60 min time point.
CONCLUSION: The current findings suggest that TrkB and IP3 could have a neuroprotective role which could be a potential pharmacological target for anti-epilepsy drugs.