Displaying all 2 publications

Abstract:
Sort:
  1. Asadullah S, Ahmed M, Sarfraz S, Zahra M, Asari A, Wahab NHA, et al.
    Heliyon, 2023 Dec;9(12):e23284.
    PMID: 38144283 DOI: 10.1016/j.heliyon.2023.e23284
    Orthopedic implants are an important tool in the treatment of musculoskeletal conditions and helped many patients to improve their quality of life. Various inorganic-organic biocomposites have been broadly investigated particularly in the area of load-bearing orthopedic/dental applications. Polyimide (PI) is a promising organic material and shows excellent mechanical properties, biocompatibility, bio-stability, and its elastic modulus is similar to human bone but it lacks bioactivity, which is very important for cell adhesion and ultimately for bone regeneration. In this research, tantalum pentoxide (Ta2O5) coating was prepared on the surface of PI by polydopamine (PDA) bonding. The results showed that Ta2O5 was evenly coated on the surface of PI, and with the concentration of Ta2O5 in the PDA suspension increased, the content of Ta2O5 particles on the surface of PI increased significantly. In addition, the Ta2O5 coating significantly increased the roughness and hydrophilicity of the PI matrix. Cell experiments showed that PI surface coating Ta2O5 could promote the proliferation, adhesion, and osteogenic differentiation of bone marrow-derived stromal cells (BMSCs). The results demonstrated that fabricating Ta2O5 coating on the surface of PI through PDA bonding could improve the biocompatibility as well as bioactivity of PI, and increase the application potential of PI in the field of bone repair materials.
  2. Rizwan M, Selvanathan V, Rasool A, Qureshi MAUR, Iqbal DN, Kanwal Q, et al.
    Water Air Soil Pollut, 2022;233(12):493.
    PMID: 36466935 DOI: 10.1007/s11270-022-05904-2
    The production of synthetic drugs is considered a huge milestone in the healthcare sector, transforming the overall health, aging, and lifestyle of the general population. Due to the surge in production and consumption, pharmaceutical drugs have emerged as potential environmental pollutants that are toxic with low biodegradability. Traditional chromatographic techniques in practice are time-consuming and expensive, despite good precision. Alternatively, electroanalytical techniques are recently identified to be selective, rapid, sensitive, and easier for drug detection. Metal-organic frameworks (MOFs) are known for their intrinsic porous nature, high surface area, and diversity in structural design that provides credible drug-sensing capacities. Long-term reusability and maintaining chemo-structural integrity are major challenges that are countered by ligand-metal combinations, optimization of synthetic conditions, functionalization, and direct MOFs growth over the electrode surface. Moreover, chemical instability and lower conductivities limited the mass commercialization of MOF-based materials in the fields of biosensing, imaging, drug release, therapeutics, and clinical diagnostics. This review is dedicated to analyzing the various combinations of MOFs used for electrochemical detection of pharmaceutical drugs, comprising antibiotics, analgesics, anticancer, antituberculosis, and veterinary drugs. Furthermore, the relationship between the composition, morphology and structural properties of MOFs with their detection capabilities for each drug species is elucidated.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links