METHODS: Hepatotoxicity was induced in Wister albino rats by injecting sodium valproate at the rate of 500 mg/kg once daily for fourteen days. Six male rats, each weighing 220-270 g, were placed into four separate groups for the study. The first group was treated with normal saline. Treatment of the second group was carried out by SVP for four days consecutively together with saline for three weeks. Group three and four were treated with sodium valproate and Jm hydroalcoholic extract applied in the concentrations of the 200 mg/kg and 400 mg/kg for the period of the three weeks. Phytochemical screening and HPLC analysis were conducted to identify the phytochemical nature and polyphenols in extract, respectively. DPPH, SOD, and NO tests were performed to measure the antioxidant activity.
RESULTS: With the initial dose of treatments to rats, anatomic, physiological, or histopathologic abnormalities were detected. After three weeks, extract of Jatropha mollissima was used to treat the valproic acid-induced hepatotoxicity (P < 0.05).
CONCLUSION: It was concluded that sodium valproate (SVP) and Jm extract were administered together. The hepatoprotective effects were extraordinarily high, with high concentrations of 400 mg/kg.
METHODS: To investigate the possible impact of aqueous-methanolic leaf extract of M. indica on oxidative stress, inflammation, and pyrexia, we used a combined in vitro and in vivo series of experiments on laboratory animals.
RESULTS: Results revealed significant antioxidant potential in 2,2-diphenylpicrylhydrazyl (DPPH) and nitric oxide (NO) scavenging assay, while significant but dose dependent antipyretic potential was documented in typhoid-paratyphoid A and B (TAB) vaccine and prostaglandin E (PGE) induced pyrexia models. Significant anti-inflammatory effects were observed in both acute and chronic inflammatory models of arachidonic acid and formalin. Phytochemical screening and high-performance liquid chromatography (HPLC) analysis of M. Indica confirmed the presence of mangiferin, quercetin, and isoquercetin. These phytoconstituents likely play a role in the observed biological activities. Our results show that M. indica has antioxidant, anti-inflammatory, and antipyretic effects, lending credence to its traditional use and advocating for its utilization as a viable contender in treating oxidative stress-associated ailments.
CONCLUSION: It is concluded that Magnifera indica has various properties in the treatment of various diseases.