Displaying all 4 publications

Abstract:
Sort:
  1. Waje, Samaila Bawa, Noorhana Yahya, Irmawati Ramli
    MyJurnal
    Monoclinic bismuth oxide (α-Bi2O3) nanoparticles were prepared via precipitation method and
    irradiated with a pulsed laser forming thin films. Their phase and surface morphological properties
    were investigated using x-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron
    microscopy (SEM) and high resolution transmission electron microscopy (HR-TEM). The XRD
    analysis shows the phase transformation to a partially crystalline tetragonal phase β-Bi2O3 thin film.
    The SEM micrograph of the nanoparticles, with an average crystal size of 72 nm, was seen to form
    a thin film with a peculiar structure, coined as “cotton-like”, is attributed to the high surface energy
    absorbed by the nanoparticles during ablation. The HR-TEM micrograph shows the particulate with
    a clearly defined interlayer spacing.
  2. Noorhana Yahya, Waje SB, Irmawati Ramli
    Sains Malaysiana, 2008;37:233-237.
    Carbon nanopipes catalyzed by high purity nickel oxide (NiO) nanoparticles were reported. The nanocrystals catalysts were first prepared using precipitation technique and characterized using x-ray diffraction (XRD), energy dispersive x-ray (EDX) and scanning electron microscopy (SEM) and subsequently used as catalyst for the formation of nanotubes. Pure phase, rhombohedral nickel oxide formation was identified from the XRD data, with the major peak located at 43.29o of the 2θ degree corresponding to a (202) plane. A pulsed laser ablation deposition technique (PLAD) was used to produce the CNTs. From the SEM micrograph, deposited CNTs shows a web-like structure, while the HR-TEM reveals carbon nanopipes with a length of 10 micron and diameter of 430 nm, suggesting that the nanocrystals aggregate and forms bigger cluster consequence of the ablation process.
  3. Ferra Naidir, Robiah Yunus, Tinia Idaty Mohd. Ghazi, Irmawati Ramli
    MyJurnal
    Palm oil-based Trimethylolpropane ester (TMP ester), with an iodine value of 66.4 g/100g, was epoxidizedto produce epoxidized TMP esters. In situ epoxidation method was used with peracetic acid to eliminatefatty acid double bonds in palm oil-based TMP ester and change it into oxirane ring. This was done toimprove the oxidative stability of trimethylolpropane ester which is a key concern limiting the usefulservice life in lubricants. The epoxidation was performed by reacting acetic acid as active oxygen carrierwith concentrated hydrogen peroxide as oxygen donor and a small amount of homogeneous catalyst(sulphuric acid). The effects of various parameters on the rate of epoxidation (such as the ratio of moleacetic acid to ethylenic unsaturation, hydrogen peroxide to ethylenic unsaturation and acetic acid moleratio, and amount of catalyst) were studied. The rate of oxidation was investigated by the percentageof oxirane oxygen analysis and iodine value.
  4. Hayder Baqer Abdullah, Irmawati Ramli, Ismayadi Ismail, Nor Azah Yusof
    MyJurnal
    The synthesis of carbon nanotubes (CNTs) using a chemical vapour deposition (CVD) method requires the use of hydrocarbon as the carbon precursor. Among the commonly used hydrocarbons are methane and acetylene, which are both light gas-phase substances. Besides that, other carbon-rich sources, such as carbon monoxide and coal, have also been reportedly used. Nowadays, researches have also been conducted into utilising heavier hydrocarbons and petrochemical products for the production of CNTs, such as kerosene and diesel oil. Therefore, this article reviews the different kind of hydrocarbon sources for CNTs production using a CVD method. The method is used for it allows the decomposition of the carbon-rich source with the aid of a catalyst at a temperature in the range 600-1200°C. This synthesis technique gives an advantage as a high yield and high-quality CNTs can be produced at a relatively low cost process. As compared to other processes for CNTs production such as arc discharge and laser ablation, they may produce high quality CNTs but has a disadvantage for use as large scale synthesis routes.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links