Displaying all 2 publications

Abstract:
Sort:
  1. Rahman MM, Islam AM, Azirun SM, Boyce AN
    ScientificWorldJournal, 2014;2014:490841.
    PMID: 24971378 DOI: 10.1155/2014/490841
    Bush bean, long bean, mung bean, and winged bean plants were grown with N fertilizer at rates of 0, 2, 4, and 6 g N m(-2) preceding rice planting. Concurrently, rice was grown with N fertilizer at rates of 0, 4, 8, and 12 g N m(-2). No chemical fertilizer was used in the 2nd year of crop to estimate the nitrogen agronomic efficiency (NAE), nitrogen recovery efficiency (NRE), N uptake, and rice yield when legume crops were grown in rotation with rice. Rice after winged bean grown with N at the rate of 4 g N m(-2) achieved significantly higher NRE, NAE, and N uptake in both years. Rice after winged bean grown without N fertilizer produced 13-23% higher grain yield than rice after fallow rotation with 8 g N m(-2). The results revealed that rice after winged bean without fertilizer and rice after long bean with N fertilizer at the rate of 4 g N m(-2) can produce rice yield equivalent to that of rice after fallow with N fertilizer at rates of 8 g N m(-2). The NAE, NRE, and harvest index values for rice after winged bean or other legume crop rotation indicated a positive response for rice production without deteriorating soil fertility.
  2. Emon EI, Islam AM, Sobayel MK, Islam S, Akhtaruzzaman M, Amin N, et al.
    Heliyon, 2023 Mar;9(3):e14438.
    PMID: 36950573 DOI: 10.1016/j.heliyon.2023.e14438
    Transition metal di-chalcogenides (TMCDs)-Tungsten disulfide (WS2) exhibit excellent optoelectronic properties such as suitable bandgap, high absorption coefficient, good conductivity, high carrier mobility, etc. to be used as a photovoltaic material for thin-film solar cells. In the present work, we have replaced the traditional buffer CdS and ITO/ZnO window layer in CdTe solar cells with the non-toxic, earth-abundant WS2 buffer and SnO2 window layer, respectively. The SCAPS-1D solar simulator is used to investigate the potentiality of WS2 as buffer material in CdTe solar cells. This numerical study provides a comparison of the performances between the proposed structure: SnO2/WS2/CdTe/Au and the baseline structure: ITO/ZnO/CdS/CdTe/Au. The impacts of the charge carrier generation rate, spectral response, current-voltage characteristics, bulk defect density, defect density at buffer/absorber interface, operating temperature, and capacitance-voltage characteristics on the solar cell performance parameters have also been analyzed. The tolerance level of defect density in WS2 bulk and WS2/CdTe interface are found to be 1017 cm-3 and 1012 cm-3, respectively. The temperature study reveals the poor structural robustness and thermal stability of the proposed cell. The conversion efficiency of the proposed cell has found to be 20.55% at the optimized device structure. Nevertheles, these findings may provide an insight to fabricate viable, environment friendly, and inexpensive CdTe thin-film solar cells.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links