Radon-222 emanation from selected locally produced samples of building materials, used in Malaysia were measured using the Professional Continuous Radon Monitor Model 1027, which is a patented electronic detecting-junction photodiode sensor to measure the concentration of radon gas. Each sample was placed for 72 hours inside a 3.11 x 10 -2 m 3 sealed container. It was found that the average radon concentration Bqm -3 of air for concrete bricks, concrete brick with cemented coatings, concrete brick with cemented coatings and paint samples were, 303.7 Bq/m 3, 436.6 Bqm -3, and 410.7 Bqm -3, respectively. (Bqm -3 ) for brown clay brick, brown clay brick with cemented coatings, brown clay brick with cemented coatings and paint were 166.5 Bqm -3, 166.5 Bqm -3, and 148 Bqm -3, respectively. (Bqm -3 ) for sample of compact ceramic tile was 0 Bqm -3. The findings show that concrete brick samples are important source of radon emanation, while brown clay brick have been accepted as the recommendation of the U.S. Environmental Protection Agency (EPA), and ceramic tiles had no emanation of radon gas due to their compact surface, or the glazed layer created on the tile surface during the manufacturing process, which blocks radon emanation. A positive correlation between radon emanation and radium content has been observed for both brown clay brick and concrete brick samples whereas a negative correlation for ceramic tile has been observed. Consequently from the findings, in order to reduce radon emanation and radon exposure in house dwellings and in addition to EPA recommendation of sealed cracks and established good ventilation, we recommend concrete walls to be painted and concrete floors to be paved with ceramic tiles.
A modified potential of the sudden approximation, modified to include interactions among nuclei of different radii, is applied to explain the mass asymmetry of fission fragments in the thermal fission of Uranium-235. The results are encouraging in that the asymmetry feature in the fission yield is displayed. It appears that the mass asymmetry is a feature that can be explained without incorporating other effects. However, close correspondence requires addition of extra features.
This study presents an efficient finite element analysis technique which shows great versatility in
modelling of precast composite flooring system subjected to static loadings. The method incorporates sliding and opening in the analysis of composite structures using the interface element which was specifically designed to simulate the actual behaviour at the interfaces between contacting materials. A three-dimensional finite element model of the precast composite slab which exhibits discontinuous behaviour was performed to demonstrate the potential and applicability of the proposed method of analysis. The results of the analysis demonstrate that the overall response of a discontinuous system to external loading is significantly affected by the bonding condition at the interfaces between the contacting materials.
Precast concrete technology forms an important part in the drive towards a full implementation of the Industrialized Building System (IBS). The IBS requires building components and their dimensions to be standardized, and preferably cast off site. Slabs are major structural elements in buildings, other than beams and columns. Standardized and optimized slabs can significantly enhance the building industries in achieving the full implementation of the IBS. Nevertheless, this requires computer techniques to achieve standardized and optimized slabs which can satisfy all building design requirements, including the standards of architectural and structural design standards. This study proposed a computer technique which analysed and designed five different types of slabs which will satisfy all the requirements in design. The most commonly used slabs included in this study were the solid one way, solid two way, ribbed, voided and composite slabs. The computer techniques enable the design of the most optimized sections for any of the slab types under any loading and span conditions. The computer technique also provides details for the reinforcements required for the slabs.
The purpose of this study is to measure and monitor the radon concentration from fabricated foamed light concrete, made of Portland cement, mine sand and granite. The concentration of radon released was measured using Radon Monitor Model 1027 from Sun Nuclear. The results of this research showed that the avearge radon concentration from foamed light concrete was 2.2 pCiL-1 L. Higher radon concentrations were detected after three days of measurements. Environment Protection Agency stated in its guidelines that radon concentration must lower than 4 pCiL-1 for a healthy environment. Thus, the use of foamed light concrete can be one of the alternatives to reduce radon concentration levels in human environment.
An attempt was made in this investigation to trace the dynamic response of roller compacted concrete dam, which is subjected to horizontal ground motion by considering the interactions between flexible foundations, reservoir water, and bottom reservoir sediments. Two-dimensional finiteinfinite element was used for the non-linear elasto-plastic dynamic analysis. In this analysis, special emphasis was given to the non-linear behaviour of discontinuities along RCC dam-bedding rock foundation which was modelled by thin layer interface. Analysis was first carried out under static loading (self-weight and hydrostatic pressure), and this this was followed by seismic analysis, with hydrodynamic pressure effect in a dam-reservoir system. Based on the numerical dynamic results, it is concluded that the bottom reservoir sediment has significant effect on the seismic response of the RCC gravity dam. Moreover, there is a redistribution of the stresses at thin layer interface with significant stresses reduction, which is resulted from the release of energy through different modes of deformation in this region.
The objective of this study was to compare the acquired image of teflon, human bone equivalent material on a Positron Emission Tomography/Computed Tomography (PET/CT) scanner with Monte Carlo simulation (MCNP). The cylindrical shape teflon phantom with dimensions of 19.5 cm length and 5.0 cm diameter was used for imaging with different settings of kilovolts (kV) and milliamperes (mA) of PET/CT. In this simulation, the photon flux in each pixel was accumulated by the Flux Image Radiograph (FIR) tally as flux image detectors and the image was plotted using Microsoft Office Excel. Results show that MCNP image was comparable with that of CT image and the obtained MCNP image depends on pixels size of the FIR tally.
An incorporation of waste tyre particles in concrete has been established to produce a green concrete.
However, despite its advantages, strength reduction is an obvious handicap. To improve the strength,
pre-treatments of the waste tyre particles and addition of Oil Palm Fruit Fibre (OPFF) were chosen and
reported in this study. The addition of OPFF was to influence the internal structure in order to improve
shrinkage and other strength properties. Performance of the composites in compressive, split tensile and
flexural strengths, as well as shrinkage and microstructure were observed. Results showed better behaviour
of the treated tyre crumb mortar rather compared to the untreated tyre, with the replacement of up to 40%
by volume of the treated tyre crumb particles and 0.5- 1.0% OPFF addition by mass of cement content.