The present study examines the use of collars and geobags for reducing local scour around bridge piles. The efficiency of collars and geobags was studied experimentally. The data from the experiments were compared with data from earlier studies on the use of single piles with a collar and with a geobag. The results showed that using a combination of a steel collar and a geobag yields the most significant scour reduction for the front and rear piles, respectively. Moreover, the independent steel collar showed better efficiency than the independent geobag below the sediment level around the bridge piles.
The scour phenomenon around bridge piers causes great quantities of damages annually all over the world. Collars are considered as one of the substantial methods for reducing the depth and volume of scour around bridge piers. In this study, the experimental and numerical methods are used to investigate two different shapes of collars, i.e, rectangular and circular, in terms of reducing scour around a single bridge pier. The experiments were conducted in hydraulic laboratory at university of Malaya. The scour around the bridge pier and collars was simulated numerically using a three-dimensional, CFD model namely SSIIM 2.0, to verify the application of the model. The results indicated that although, both types of collars provides a considerable decrease in the depth of the scour, the rectangular collar, decreases scour depth around the pier by 79 percent, and has better performance compared to the circular collar. Furthermore, it was observed that using collars under the stream's bed, resulted in the most reduction in the scour depth around the pier. The results also show the SSIIM 2.0 model could simulate the scour phenomenon around a single bridge pier and collars with sufficient accuracy. Using the experimental and numerical results, two new equations were developed to predict the scour depth around a bridge pier exposed to circular and rectangular collars.