Displaying publications 1 - 20 of 39 in total

Abstract:
Sort:
  1. Jaswir I, Che Man YB, Hassan TH
    Asia Pac J Clin Nutr, 2005;14(4):402-13.
    PMID: 16326648
    Antioxidants are important inhibitory compounds against the oxidative deterioration of food. This study investigated the effects of various phytochemical antioxidant systems [oleoresin rosemary (OR), oleoresin sage (OS) and citric acid (CA)] on the physico-chemical characteristics of refined, bleached and deodorized (RBD) palm olein during the frying of potato chips. The effects of various mixtures of the antioxidants on the oil was also studied in repeated deep frying. The response surface methodology was used to optimize the composition of mixed antioxidants used. A comparative study was carried out with synthetic antioxidants. Samples of the oil after frying were analyzed for different physical and chemical properties. OR and OS were found to be effective phytochemical antioxidants protecting RBD palm olein against oxidative deterioration during frying.
  2. Osman F, Jaswir I, Khaza'ai H, Hashim R
    J Oleo Sci, 2007;56(3):107-13.
    PMID: 17898471
    Total lipid contents and fatty acid composition of 13 marine fish species namely, "jenahak" (Lutianus agentimaculatus), "kebasi" (Anadontostoma chacunda), "duri" (Arius cumatranus), "tenggiri batang" (Scomberomorus commersoni), "kembong" (Rastrelliger kanagurta), "kintan" or "sebalah" (Psettodes crumei), "kerisi" (Pristipomodes typus), "kerapu" (Epinephelus sexfasciatus), "gelama kling" (Sciaena dussumieri), "malong" (Congresax talabon), "laban" (Cynoglossus lingua), "yu 9" (Scolidon sorrakowah) and "bagi" (Aacnthurs nigrosis) commonly found in Pulau Tuba, one of the islands surrounding the popular tourist destination Langkawi in Malaysia were determined. All fish showed a considerable amount of unsaturated fatty acids particularly those with 4, 5 and 6 double bonds. Two physiologically important n-3 polyunsaturated fatty acids (PUFAs), i.e. eicosapentaenoic acid (EPA) and docasahaexaenoic acid (DHA), made up of more than 50% of the total PUFAs. For saturated fatty acids, palmitic was found to be the major one in all types of fish studied. Based on DHA, EPA and arachidonic acid (AA) contents, "gelama kling" was found to be the best source (23, 11 and 7%, respectively) followed by "kerapu" (21, 10, 9%) and "sebalah" (19, 14, 4%).
  3. Arshad ZI, Amid A, Yusof F, Jaswir I, Ahmad K, Loke SP
    Appl Microbiol Biotechnol, 2014 Sep;98(17):7283-97.
    PMID: 24965557 DOI: 10.1007/s00253-014-5889-y
    This review highlights the use of bromelain in various applications with up-to-date literature on the purification of bromelain from pineapple fruit and waste such as peel, core, crown, and leaves. Bromelain, a cysteine protease, has been exploited commercially in many applications in the food, beverage, tenderization, cosmetic, pharmaceutical, and textile industries. Researchers worldwide have been directing their interest to purification strategies by applying conventional and modern approaches, such as manipulating the pH, affinity, hydrophobicity, and temperature conditions in accord with the unique properties of bromelain. The amount of downstream processing will depend on its intended application in industries. The breakthrough of recombinant DNA technology has facilitated the large-scale production and purification of recombinant bromelain for novel applications in the future.
  4. Jaswir I, Monsur HA, Simsek S, Amid A, Alam Z, bin Salleh MN, et al.
    J Oleo Sci, 2014;63(8):787-94.
    PMID: 25007746
    Aqueous extracts obtained from five Malaysian brown seaweeds, Sargassum duplicatum, Sargassum binderi, Sargassum fulvellum, Padina australis, and Turbinaria turbinata, were investigated for their abilities to inhibit nitric oxide (NO) production in lipopolysaccharide (LPS)-induced macrophage RAW 264.7 cell lines as well as to determine their chemical composition. The percentage yield of extracts varied among species, with P. australis having the lowest yield and T. turbinata having the highest yield. The chemical compositions of the extracts showed that the percentage of sulfate ions as well as uronic acid and total sugar content varied significantly. All extracts contained high fucose and inhibited NO secretion in a dose-dependent manner. Extracts of P. australis and T. turbinata dosed at 200 μg/mL were able to inhibit NO secretion by > 75%. Furthermore, cytotoxicity assays revealed that some extracts were moderately toxic, while others were not. Based on these results, brown seaweed of Malaysian origin should be investigated for the production of additional anti-inflammatory compounds.
  5. Jaswir I, Shahidan N, Othman R, Has-Yun Hashim YZ, Octavianti F, bin Salleh MN
    J Oleo Sci, 2014;63(8):761-7.
    PMID: 25007748
    Carotenoids are antioxidants with pharmaceutical potential. The major carotenoids important to humans are α-carotene, β-carotene, lycopene, lutein, zeaxanthin, and β-cryptoxanthin. Some of the biological functions and actions of these individual carotenoids are quite similar to each other, whereas others are specific. Besides genotype and location, other environmental effects such as temperature, light, mineral uptake, and pH have been found affect carotenoid development in plant tissues and organs. Therefore, this research investigated the effects of the season and storage periods during postharvest handling on the accumulation of carotenoid in pumpkin. This study shows that long-term storage of pumpkins resulted in the accumulation of lutein and β-carotene with a slight decrease in zeaxanthin. The amounts of β-carotene ranged from 174.583±2.105 mg/100g to 692.871±22.019 mg/100g, lutein from 19.841±9.693 mg/100g to 59.481±1.645 mg/100g, and zeaxanthin from not detected to 2.709±0.118 mg/100g. The pumpkins were collected three times in a year; they differed in that zeaxanthin was present only in the first season, while the amounts of β-carotene and lutein were the highest in the second and third seasons, respectively. By identifying the key factors among the postharvest handling conditions that control specific carotenoid accumulations, a greater understanding of how to enhance the nutritional values of pumpkin and other crops will be gained. Postharvest storage conditions can markedly enhance and influence the levels of zeaxanthin, lutein, and β-carotene in pumpkin. This study describes how the magnitudes of these effects depend on the storage period and season.
  6. Noviendri D, Jaswir I, Taher M, Mohamed F, Salleh HM, Noorbatcha IA, et al.
    J Oleo Sci, 2016 Jul 15.
    PMID: 27430384
    Microencapsulation is a promising approach in drug delivery to protect the drug from degradation and allow controlled release of the drug in the body. Fucoxanthin-loaded microsphere (F-LM) was fabricated by two step w/o/w double emulsion solvent evaporation method with poly (L-lactic-co-glycolic acid) (PLGA) as carrier. The effect of four types of surfactants (PVA, Tween-20, Span-20 and SDS), homogenization speed, and concentration of PLGA polymer and surfactant (PVA), respectively, on particle size and morphology of F-LM were investigated. Among the surfactants tested, PVA showed the best results with smallest particle size (9.18 µm) and a smooth spherical surface. Increasing the homogenization speed resulted in a smaller mean F-LM particle size [d(0.50)] from 17.12 to 9.18 µm. Best particle size results and good morphology were attained at homogenization speed of 20 500 rpm. Meanwhile, increased PLGA concentration from 1.5 to 11.0 (% w/v) resulted in increased F-LM particle size. The mean particle size [d(0.5)] of F-LM increased from 3.93 to 11.88 µm. At 6.0 (% w/v) PLGA, F-LM showed the best structure and external morphology. Finally, increasing PVA concentration from 0.5 to 3.5 (% w/v) resulted in decreased particle size from 9.18 to 4.86 µm. Fucoxanthin characterization before and after microencapsulation was carried out to assess the success of the microencapsulation procedure. Thermo gravimetry analysis (TGA), glass transition (Tg) temperature of F-LM and fucoxanthin measured using DSC, ATR-FTIR and XRD indicated that fucoxanthin was successfully encapsulated into the PLGA matrix, while maintaining the structural and chemical integrity of fucoxanthin.
  7. Jaswir, I., Alotaibi, A., Jamal, P., Octavianti, F., Lestari, W., Hendri, R., et al.
    MyJurnal
    Gelatin is one of the most widely used food ingredients, with wide applications in the food
    industry. It was reported that 41% of the gelatin produced in the world is sourced from pig
    skin, 28.5% from bovine hides and 29.5% from bovine bones. However, factors such as the
    outbreak of BSE (a.k.a. mad cow disease) and increasing demand for non-mammalian gelatin
    for halal and kosher food markets have revived interest in gelatin replacers from plant sources.
    In this study, we have successfully extracted valuable pectin—as gelatin replacer--from various
    types of plant wastes. Pectin is a high value functional food ingredient widely used as a gelling
    agent and stabilizer. It is also an abundant, ubiquitous and multifunctional component of the
    cell walls of all land plants. Mango peel was screened as the ideal source for high-yield (36.6%)
    pectin of satisfactory quality. The results indicate that citric acid was the best solution for
    recovery of pectin from mango peels. An extraction temperature of 90°C and pH 2 provided
    the optimum conditions for maximum yield of pectin. The resulting crude mango peel pectin
    (CMPP) was analyzed for physicochemical parameters. The results indicated values for ash
    content (0.0412%), moisture content (0.303%), viscosity (45.18%), galacturonic acid content
    (36.8-37.2-40%) and degree of esterification (38.3-41%). Following analysis of its gelling
    properties and sensory evaluation, CMPP has good potential to be applied in the food industry
    as a low-methoxyl pectin and a cheap source of gelatin replacer for jam preparations.
  8. Noor Raihana, A.R., Marikkar, J.M.N., Jaswir, I., Nurrulhidayah, A.F., Miskandar, M.S.
    MyJurnal
    A study was carried out to compare the cookie dough properties and cookie quality made out
    of pink guava oil-palm stearin blends and lard (LD). Since LD is prohibited under religious
    restrictions, plant shortenings were prepared by mixing pink guava seed oil with palm stearin
    (PGO/PS) in different ratios: PGO-1, 40:60; PGO-2, 45:55; PGO-3, 50:50; PGO-4; 55:45 as
    replacement. The effect of these formulated plant-based shortenings and LD shortening were
    compared on dough rheological properties and cookie quality. Rheology and hardness of the
    cookie dough were evaluated using Texture Analyser (TA). Cookie hardness was evaluated
    with TA while cookie surface colors were measured using the CIE L*a*b* colorimetric system.
    Among the samples, cookies made out of PGO-2 with the ratio 45:55 (PGO:PS) performed the
    best substitute for LD to be used as shortening in cookies. PGO-2 also displayed the closest
    similarity to LD in cookies for hardness, size and thickness, cracking size as well as colour.
    As PGO-2 was a shortening formulated with plant-based ingredients, it could comply with the
    halal and toyyiban requirements.
  9. Jaswir, I., Noviendri, D., Salleh, H.M., Taher, M., Mohamed, F., Octavianti, F., et al.
    MyJurnal
    Supercritical carbon dioxide (SC-CO2) extraction of fucoxanthin is more advantageous over conventional solvent extraction as it is less toxic, less hazardous to the environment and preserves the bioactivity of fucoxanthin. A face-centered central composite design (FCCCD) based on response surface methodology (RSM) was employed for SC-CO2 extraction of oils and fucoxanthin from the brown seaweed Sargassum binderi, with ethanol as a co- solvent. Three independent parameters namely, extraction temperature (A: 40, 50, 60oC), pressure (B: 2900, 3625, 4350 psig and particle size (C: 90, 500 and 1000 µm) were investigated to optimize extraction oil yields (EOY) and fucoxanthin yields (FY). A regression model was developed, tested for quality of fit (R2) and expressed in the form of 3D response surface curve and 2D contour. The optimum extraction conditions were obtained at extraction temperature (A) 50oC, pressure (B) 3625 psig and particle size (C) 500 µm. Under these conditions, optimal EOY and FY were 10.04 mg/g and 3188.99 µg/g, respectively. The difference between the lowest and the highest response in EOY and FY were 5.44 – 10.04 mg/g and 2109.10 - 3188.90 µg/g, respectively. The lowest yields were identified at 60oC, 2900 psig and 1000 µm. The regression models generated showing interactions between the variables and EOY and FY response were significant as tested by ANOVA (p < 0.0005 and p < 0.0007, respectively) with high R2 values (0.9848 and 0.9829, respectively). Interactions between the parameters had a strong synergistic effect on EOY and FY values, as indicated by the 3D response surface curve and 2D contour. The experimental results matched the predicted results closely. This indicated the suitability of the models developed and the success of FCCCD under RSM in optimizing the S. binderi extraction conditions.
  10. Sitti Nurmiah, Syarief, R., Sukarno, Peranginangin, R., Nurtama, B., Jaswir, I.
    MyJurnal
    A refined carrageenan is a form of carrageenan, extracted from red algae and purified. Important factors affecting the commercial production of carrageenan after alkaline extraction are the ratio of seaweed to water, temperature, and extraction time. In this study, extraction of refined carrageenan from Kappaphycus alvarezii was conducted on pilot plan scale. Extraction conditions were varied, affecting the final characteristics of the carrageenan product. The optimum conditions investigated for the extraction process included the ratio of seaweed to water, temperature, and extraction time determined using Response Surface Methodology (RSM). Box-Behnken was used to investigate the interaction effects of three independent variables, namely seaweed to water ratio, extraction temperature and extraction time. The results showed that based on the RSM approach, ratio of seaweed to water, temperature and extraction time had a significant influence on the carrageenan. Optimum extraction conditions obtained were seaweed to water ratio of 1:25.22, extraction temperature of 85.80oC and extraction time of 4 h. Under these optimal conditions, the yield obtained was 31.74 % and gel strength was 1833.37 g.cm-2.
  11. Nurul Asyikeen, A.M., Jaswir, I., Akmeliawati, R., Ibrahim, A.M., Aslam, M., Octavianti, F.
    MyJurnal
    This study has been successfully conducted to develop a method for rapid detection of ethanol (EtOH) concentration in beverages using Portable Electronic Nose (E-Nose) developed by International Islamic University Malaysia (IIUM). E-Nose is widely used in food analysis. However, E-Noses used in the food industry are big and not portable. The very recently developed portable device used in this study is very handy and practical for use. Results from this study revealed that the device could be used for rapid detection of ethanol concentration in various beverages such as alcoholic beverages, isotonic drinks, soft drinks and fruit juices from different brands sold in Malaysia. From the result obtained, it was shown that the device has high accuracy and reliability where it could detect ethanol concentration as low as 0.1% (v/v). The analytical condition for the detection was achieved with the lowest voltage output of 0.43V. While for optimization analysis using Response Surface Methodology (RSM), optimum Headspace Generated Time (HGT) and bottle’s volume (mL) obtained are 0.66h and 100 mL, respectively.
  12. Jamal, P., Jaswir, I., Yusof, N., Jami, M.S.
    MyJurnal
    Gelatin from fish skin is known to be an alternative source for mammalian gelatin. However, it has weaker properties compared to bovine and porcine gelatin, which limits its use in the industry. The conventional method for fish gelatin extraction requires long production time and could cause serious water pollution and chemical treatments are often being used to enhance the yield of fish gelatin and its properties but it may affect the amino acid content of the gelatin. In this regard, High-Pressure Processing (HPP) is a novel method suggested for fish gelatin extraction. The HPP method is classified as green technology as it requires low electricity throughout the process. This study will discuss the impact of HPP the technique gelatin extracted from fish skin. Skins from four types of fish, namely red tilapia (Oreochromis niloticus), black tilapia (Oreochromis mossambicus), grouper (Epinephelus areolatus) and threadfin bream (Nemipterus tambuloides), were used. High pressure was applied at either pretreatment in citric acid solution or during thermal extraction; and the pressure was maintained at 250 MPa with pressure holding time of 10 minutes and 18 hours of water extraction. Gelatin extract from traditional acid-base method was prepared as a standard for comparison. The study found that there was an increment in the yield of gelatin and the concentration of gelatin extract, and the pre-treatment time was also reduced.
  13. Subara, D., Jaswir, I., Alkhatib, M.F.R., Noorbatcha, I.A.N.
    MyJurnal
    Animal proteins have become an useful source for producing gelatin nanoparticles, due to its application in cosmetics and therapeutics. Gelatin nanoparticle (GNP) is an excellent biodegradable and biocompatible material. Due to its chemical modification potential gelatin nanoparticles are very promising in carrier system for drug delivery. Most of the commercials gelatin are derived from mammalian sources, such as porcine and bovine. Fish gelatin has become a good alternative resource for GNPs production in view of the various religious, safety and economic reasons. In this present work, the tilapia fish gelatin was used as a raw material for the production gelatin nanoparticles via modified two-step desolvation method. In this process, obtaining high molecular weight (HMW) fraction content of fish gelatin is very crucial for the preparation of stable and small size GNPs. Hence the present study was carried out to assess the various formulation parameters in the first step in the two-step desolvation method to produce fish gelatin nanoparticles (FGNPs). The nanoparticles formed were characterized for mean size and size distribution, while the morphology of the particles was evaluated by field emission scanning electron microscope (FESEM). The size of fish gelatin nanoparticles was found to be 254±11 nm which is suitable for drug delivery. The study indicated that a high fraction of HMW in precipitate at the first step desolvation could be obtained by using gelatin concentration 9%, temperature 45°C, centrifugation speed at 12000 x g, and centrifugation time was 5 min. It showed that this method is efficient compared to conventional method.
  14. Irna, C., Jaswir, I., Othman, R., Jimat, D.N.
    MyJurnal
    The use of High Pressure Processing as an extraction method was studied by evaluating the yield of astaxanthin from shrimp carapace as a model. Previous studies have demonstrated the antioxidant and antimicrobial properties of astaxanthin. The aim of this research was to compare these properties of astaxanthin as a surrogate for its yield from High Pressure Processing (HPP) extraction with the effect of hydrostatic pressure, holding time and amount of solvents versus chemical extraction method. A solvent mixture of acetone and methanol 7:3 (v/v) was used in both methods. The pressure treated was at 238 MPa with 16.29 min of holding time and 6.59 ml of solvents for HPP method. Antioxidant activity was evaluated using scavenging activity of DPPH radical, the reducing activity of Ferrum redox reaction and oxygen radical absorption capacity. Antimicrobial activity was evaluated using a zone of inhibition test against four strain of bacteria: E. coli, E. aerogenes, S. aureus and B. subtilis. The sample of astaxanthin demonstrated a significant increase in DPPH radical scavenging activity (25.47% to 87.90%), reducing activity of Ferrum redox reaction (2.86 µmol TE/g to 8.13 µmol TE/g) and oxygen radical absorption capacity (2,000 µmol TE/100 g to 4,000 µmol TE/100 g) compared to the chemical extraction sample. The antimicrobial activity of the astaxanthin from the HPP sample produced a greater zone of inhibition against all four strains of bacteria when compared to the chemically extracted sample. A higher quality of astaxanthin was achieved with the HPP extraction method compared to chemical extraction.
  15. Othman, R., Kammona, S., Jaswir, I., Jamal, P., Mohd Hatta, F.A.
    MyJurnal
    Abiotic stress factors are the main limitation to plant growth and yield in agriculture. Orange sweet potatoes may become major sources of carotenoids in the diet, but the extent of environmental and genetic influences on plant carotenoid biosynthesis are poorly understood. Carotenoid biosynthesis is regulated by several factors such as water, light, pathogen, salinity, nutrients and is susceptible to geometric isomerisation in the presence of oxygen, light and heat which causes colour loss and oxidation. The main problems associated with carotenoid accumulation arise from the inherent instability of pigments. In this study carotenoid biogenesis is investigated in sweet potato callus culture as a potential model system for carotenogenesis by analysing the effects of environmental stress agents such as NaCl (for salt tolerance), PEG (for drought tolerance), salicylic acid (for pathogen stress or disease resistance) and nutrient strength towards carotenoid content and composition. Results of this study revealed that the bioactive compounds detected in orange sweet potato callus were α-carotene, β-carotene, lutein and zeaxanthin. Not surprisingly, the response of sweet potato callus culture to such environments appeared to be highly light dependent. Another factor is the activity of functional enzymes and candidate enzymes that regulate carotenoid biosynthesis, which will determine type and quantity of individual carotenoids. By understanding the environmental factors that affected carotenoid biosynthesis, it should be possible to enhance the amount and type of carotenoid that accumulates in sweet potato tubers. In conclusion, in vitro callus culture is suggested as a successful new alternative approaches to enhance or enrich certain carotenoids through controlled environment.
  16. Othman, R., Kammona, S., Jaswir, I., Jamal, P., Mohd Hatta, F.A.
    MyJurnal
    Carotenoid content in plants differs due to several factors such as cultivar, maturity, climate, locality and storage. Improving the nutritional values of sweet potato is an important breeding goal and understanding the regulation, genetics and inheritance of carotenoid biosynthesis are vital to achieve this. Environmental conditions can have a marked influence on the accumulation of carotenoids in sweet potato tubers. Little is known about the effects of location, post-harvest storage time and harvesting season particularly on carotenoid biosynthesis. Therefore, this study aimed to investigate the effects of growing location, harvesting season and storage time on carotenoid biosynthesis in orange sweet potato tuber flesh. The results showed that orange sweet potato tubers contained α-carotene and β-carotene in the first and second harvesting season (year 2011 and 2012), whereas lutein and zeaxanthin were detected only in the third harvesting season (year 2013). Analysis of carotenoid profiles of the orange sweet potato tubers grown in three different locations confirmed that the harvesting season had a major effect on the total carotenoid content and the individual carotenoid compounds. The post-harvest storage time of sweet potato tubers also appears to have distinct effects on carotenoid biosynthesis, the magnitude of the effects being dependent on the storage time, harvesting season and location. The results of this study will help to understand the effects of location, year of harvesting season and storage time on carotenoid accumulation in orange sweet potato tubers.
  17. Yusof, N., Jaswir, I., Jamal, P., Jami, M.S., Octavianti, F.
    MyJurnal
    Extraction of gelatin using traditional acid-base pretreatment method has several limitations
    such as time consuming and causes serious water pollution. Chemical treatment often being used
    as an alternative process to overcome the weaknesses of the conventional method. However,
    excessive chemical elements would damage the structure of the gelatin due to its high sensitivity
    to the acid content. High Pressure Processing (HPP) is a novel and environmental friendly
    method that has been suggested to assist gelatin extraction. Pressurization during pretreatment
    could reduce the extraction time and amount of acid used. It also has a potential in enhancing the
    properties of the gelatin extract and increasing the gelatin yield. In this research, One-Factor-
    at-Time (OFAT) and optimization study were done to determine the optimum parameters for
    extraction of gelatin assisted by HPP from red tilapia skin. Four parameters; applied pressure,
    pressure holding time, ratio of acid to skin and extraction time have been selected for the OFAT
    design and concentration of the gelatin extract and percentage of yield gelatin were evaluated.
    From OFAT, optimum technical parameters for response surface optimization design were 250
    MPa pressure, 7.5 ml of acid to 1 g of skin and 12 hours extraction time. Pressure holding
    time was fixed for 10 min. FCCCD has been used for optimization study. Results from the
    data shows that the optimum conditions for gelatin extraction from red tilapia skin were 250
    MPa for pressure, 10 min of pressure holding time, 7.5 ml of acid for 1 g of skin and 12 hours
    of extraction time while the maximum concentration and yield were 19.51 mg/ml and 32.04%
    (320.4 mg/g), respectively. These findings proved that HPP could increase the concentration
    and the yield of the gelatin while reducing the chemical waste and shortening the extraction
    process.
  18. Noor Raihana, A.R., Marikkar, J.M.N., Jaswir, I., Nurrulhidayah, A.F., Miskandar, M.S.
    MyJurnal
    A study was carried out to compare composition, thermal behavior, and polymorphic forms of
    palm stearin-pink guava seed oil blends with those of lard (LD). Four blends were prepared by
    mixing pink guava seed oil (PGO) with and palm stearin (PS) in different ratios: PGO-1, 40:60;
    PGO-2, 45:55; PGO-3, 50:50; PGO-4; 55:45. The blends and lard were compared in terms of
    their basic physicochemical parameters, fatty acid and triacylglycerol (TAG) compositions,
    melting, solidification and polymorphic properties. Results showed that PGO-2 and LD were
    found to display similarities in terms of slip melting point value and the peak maximum of the
    high-melting thermal transition. In the solid fat content (SFC) profile, PGO-2 and LD were
    found to display the least difference. In the X-ray diffraction analysis, PGO-2 displayed both β
    and β’ polymorphs that were similar to the polymorphic form of LD.
  19. Jamal, P., Hashlamona, A., Jaswir, I., Akbar, I., Nawawi, W.M.F.W
    MyJurnal
    Lycopene is a well-known carotenoid, causing red color of fresh tomatoes. The significance of lycopene as antioxidant agent and coloring in the cosmetics, and its use in pharmaceutical and food industries has expanded in the recent years. Extraction of lycopene was improved effectively under solid state fermentation process; whereby, cellulase produced from the fermentation process was employed to degrade the cell-wall constituents, which facilitated the release of intracellular contents. The optimum conditions for the fermentation process were determined using Response Surface Methodology (RSM). The Facecentered Central Composite Design (FCCD) was employed to investigate the effects of three independent factors: moisture content in the range of 60 to 80 %, inoculum size ranging between 5 to 15% while the incubation time was set at 2, 3 and 4 days. Twenty runs of experiment were conducted and each one was repeated three times. The obtained data was analyzed using the Design Expert software v.6.0.8. Regression analysis showed that 94.56% of the variation was explained by the software. Under the optimized conditions, the highest lycopene yield was 307.2 µg/g when the moisture content was 80%, the inoculum size was 15% in 4 incubation days. The experimental values agreed with the predicted values, thus proving stability of the model used and the success of RSM. This study showed as to how fermentation can improve the extraction process by comparing the result with the control (extraction without fermentation) which was 0.8 µg/g.
  20. Jemain, S.F.P., Jamal, P., Raus, A. R., Amid, A., Jaswir, I.
    MyJurnal
    Medicinal properties of Malaysian Curcuma caesia have not been studied extensively, even though it has been used as a traditional remedy. This study examined the effects of various extraction temperatures (30, 40, 50, 60, 70oC) using a high frequency (40 kHz) ultrasonic extraction method, time (30,60,90 and 120 minutes), pH (1,2,3,4,5,6,7,8,9,10) on the extraction yield of total phenolics and DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging activities from C. caesia rhizome. Extraction was most efficient at pH 6.0, while the extraction time of 30 minutes and temperature of 60oC was the best in terms of total phenolics content and DPPH scavenging activity. This study is important due to its ability to improve extraction of total phenolics compound using ultrasonic extraction method while maintaining a relatively high DPPH scavenging activity of the extracts.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links