Palm oil (PO) is widely utilised in the food industry and consumed in large quantities by humans. Owing to its bioactive components, such as fatty acids, carotenoids, vitamin E, and phenolic compounds, PO has been utilised for generations. However, public concern about their adverse effects on human health is growing. A literature search was conducted to identify fractionated palm oil processing techniques, proof of their health advantages, and potential food applications. Refined palm oil (RPO) is made from crude palm oil (CPO) and can be fractionated into palm olein (POl) and palm stearin (PS). Fractional crystallisation, dry fractionation, and solvent fractionation are the three basic fractionation procedures used in the PO industry. The composition of triacylglycerols and fatty acids in refined and fractionated palm oil and other vegetable oils is compared to elucidate the triacylglycerols and fatty acids that may be important in product development. It is well proven that RPO, POl, and PS extends the oil's shelf life in the food business. These oils have a more significant saturated fat content and antioxidant compounds than some vegetable oils, such as olive and coconut oils, making them more stable. Palm olein and stearin are also superior shortening agents and frying mediums for baking goods and meals. Furthermore, when ingested modestly daily, palm oils, especially RPO and POl, provide health benefits such as cardioprotective, antidiabetic, anti-inflammatory, and antithrombotic effects. Opportunities exist for fractionated palm oil to become a fat substitute; however, nutrition aspects need to be considered in further developing the market.
Red palm oil (RPO) is a natural source of Vitamin E (70-80% tocotrienol). It is a potent natural antioxidant that can be used in skin-care products. Its antioxidant property protects skin from inflammation and aging. In our work, a tocotrienol-rich RPO-based nanoemulsion formulation was optimized using response surface methodology (RSM) and formulated using high pressure homogenizer. Effect of the concentration of three independent variables [surfactant (5-15 wt%), co-solvent (10-30 wt%) and homogenization pressure (500-700 bar)] toward two response variables (droplet size, polydispersity index) was studied using central composite design (CCD) coupled to RSM. RSM analysis showed that the experimental data could be fitted into a second-order polynomial model and the coefficients of multiple determination (R2) is 0.9115. The optimized formulation of RPO-based nanoemulsion consisted of 6.09 wt% mixed surfactant [Tween 80/Span 80 (63:37, wt)], 20 wt% glycerol as a co-solvent via homogenization pressure (500 bar). The optimized tocotrienol-rich RPO-based nanoemulsion response values for droplet size and polydispersity index were 119.49nm and 0.286, respectively. The actual values of the formulated nanoemulsion were in good agreement with the predicted values obtained from RSM, thus the optimized compositions have the potential to be used as a nanoemulsion for cosmetic formulations.