Displaying all 3 publications

Abstract:
Sort:
  1. Hag A, Handayani D, Pillai T, Mantoro T, Kit MH, Al-Shargie F
    Sensors (Basel), 2021 Sep 20;21(18).
    PMID: 34577505 DOI: 10.3390/s21186300
    Exposure to mental stress for long period leads to serious accidents and health problems. To avoid negative consequences on health and safety, it is very important to detect mental stress at its early stages, i.e., when it is still limited to acute or episodic stress. In this study, we developed an experimental protocol to induce two different levels of stress by utilizing a mental arithmetic task with time pressure and negative feedback as the stressors. We assessed the levels of stress on 22 healthy subjects using frontal electroencephalogram (EEG) signals, salivary alpha-amylase level (AAL), and multiple machine learning (ML) classifiers. The EEG signals were analyzed using a fusion of functional connectivity networks estimated by the Phase Locking Value (PLV) and temporal and spectral domain features. A total of 210 different features were extracted from all domains. Only the optimum multi-domain features were used for classification. We then quantified stress levels using statistical analysis and seven ML classifiers. Our result showed that the AAL level was significantly increased (p < 0.01) under stress condition in all subjects. Likewise, the functional connectivity network demonstrated a significant decrease under stress, p < 0.05. Moreover, we achieved the highest stress classification accuracy of 93.2% using the Support Vector Machine (SVM) classifier. Other classifiers produced relatively similar results.
  2. Kang X, Agastya IMA, Handayani DOD, Kit MH, Rahman AWBA
    Data Brief, 2021 Dec;39:107467.
    PMID: 34703858 DOI: 10.1016/j.dib.2021.107467
    The electroencephalogram (EEG) signal data were obtained from Yayasan Kita dan Buah Hati (YKBH), Jakarta, Indonesia and collected using a Brain Maker EEG machine with 19 channels. The sampling rate of the machine was 250 Hz. Fourteen participants (five females and nine males) participated in the data collection. A psychologist verified that seven of them were addicted to porn, and seven were healthy teenagers. The EEG data were recorded using one protocol with nine tasks for 10 min. The three stages were the baseline (tasks with eyes closed and open), emotional state (happy, calm, sad and fearful tasks) and main (15-words memorisation task, executive task and 15-words recall task) stages. The data obtained was used to analyse the signal pattern of pornography addiction amongst teenagers, as well as the emotional signal pattern and working memory capacity.
  3. Hag A, Handayani D, Altalhi M, Pillai T, Mantoro T, Kit MH, et al.
    Sensors (Basel), 2021 Dec 15;21(24).
    PMID: 34960469 DOI: 10.3390/s21248370
    In real-life applications, electroencephalogram (EEG) signals for mental stress recognition require a conventional wearable device. This, in turn, requires an efficient number of EEG channels and an optimal feature set. This study aims to identify an optimal feature subset that can discriminate mental stress states while enhancing the overall classification performance. We extracted multi-domain features within the time domain, frequency domain, time-frequency domain, and network connectivity features to form a prominent feature vector space for stress. We then proposed a hybrid feature selection (FS) method using minimum redundancy maximum relevance with particle swarm optimization and support vector machines (mRMR-PSO-SVM) to select the optimal feature subset. The performance of the proposed method is evaluated and verified using four datasets, namely EDMSS, DEAP, SEED, and EDPMSC. To further consolidate, the effectiveness of the proposed method is compared with that of the state-of-the-art metaheuristic methods. The proposed model significantly reduced the features vector space by an average of 70% compared with the state-of-the-art methods while significantly increasing overall detection performance.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links