Displaying all 3 publications

Abstract:
Sort:
  1. Shobugawa Y, Takeuchi T, Hibino A, Hassan MR, Yagami R, Kondo H, et al.
    Epidemiol Infect, 2017 Jan;145(2):272-284.
    PMID: 27682641
    In temperate zones, human respiratory syncytial virus (HRSV) outbreaks typically occur in cold weather, i.e. in late autumn and winter. However, recent outbreaks in Japan have tended to start during summer and autumn. This study examined associations of meteorological conditions with the numbers of HRSV cases reported in summer in Japan. Using data from the HRSV national surveillance system and national meteorological data for summer during the period 2007-2014, we utilized negative binomial logistic regression analysis to identify associations between meteorological conditions and reported cases of HRSV. HRSV cases increased when summer temperatures rose and when relative humidity increased. Consideration of the interaction term temperature × relative humidity enabled us to show synergistic effects of high temperature with HRSV occurrence. In particular, HRSV cases synergistically increased when relative humidity increased while the temperature was ⩾28·2 °C. Seasonal-trend decomposition analysis using the HRSV national surveillance data divided by 11 climate divisions showed that summer HRSV cases occurred in South Japan (Okinawa Island), Kyushu, and Nankai climate divisions, which are located in southwest Japan. Higher temperature and higher relative humidity were necessary conditions for HRSV occurrence in summer in Japan. Paediatricians in temperate zones should be mindful of possible HRSV cases in summer, when suitable conditions are present.
  2. SiouNing AS, Seong TS, Kondo H, Bhassu S
    Molecules, 2023 May 26;28(11).
    PMID: 37298833 DOI: 10.3390/molecules28114357
    An infectious disease is the most apprehensive problem in aquaculture as it can lead to high mortality in aquatic organisms and massive economic loss. Even though significant progress has been accomplished in therapeutic, prevention, and diagnostic using several potential technologies, more robust inventions and breakthroughs should be achieved to control the spread of infectious diseases. MicroRNA (miRNA) is an endogenous small non-coding RNA that post-transcriptionally regulates the protein-coding genes. It involves various biological regulatory mechanisms in organisms such as cell differentiation, proliferation, immune responses, development, apoptosis, and others. Furthermore, an miRNA also acts as a mediator to either regulate host responses or enhance the replication of diseases during infection. Therefore, the emergence of miRNAs could be potential candidates for the establishment of diagnostic tools for numerous infectious diseases. Interestingly, studies have revealed that miRNAs can be used as biomarkers and biosensors to detect diseases, and can also be used to design vaccines to attenuate pathogens. This review provides an overview of miRNA biogenesis and specifically focuses on its regulation during infection in aquatic organisms, especially on the host immune responses and how miRNAs enhance the replication of pathogens in the organism. In addition to that, we explored the potential applications, including diagnostic methods and treatments, that can be employed in the aquaculture industry.
  3. Zaraket H, Kondo H, Hibino A, Yagami R, Odagiri T, Takemae N, et al.
    Front Microbiol, 2016;7:262.
    PMID: 27014195 DOI: 10.3389/fmicb.2016.00262
    Influenza A viruses evolve at a high rate requiring continuous monitoring to maintain the efficacy of vaccines and antiviral drugs. We performed next generation sequencing analysis of 100 influenza A/H3N2 isolates collected in four Asian countries (Japan, Lebanon, Myanmar, and Vietnam) during 2012-2015. Phylogenetic analysis revealed several reassortment events leading to the circulation of multiple clades within the same season. This was particularly evident during the 2013 and 2013/2014 seasons. Importantly, our data showed that certain lineages appeared to be fitter and were able to persist into the following season. The majority of A/H3N2 viruses continued to harbor the M2-S31N mutation conferring amantadine-resistance. In addition, an S31D mutation in the M2-protein, conferring a similar level of resistance as the S31N mutation, was detected in three isolates obtained in Japan during the 2014/2015 season. None of the isolates possessed the NA-H274Y mutation conferring oseltamivir-resistance, though a few isolates were found to contain mutations at the catalytic residue 151 (D151A/G/N or V) of the NA protein. These variations did not alter the susceptibility to neuraminidase inhibitors and were not detected in the original clinical specimens, suggesting that they had been acquired during their passage in MDCK cells. Novel polymorphisms were detected in the PB1-F2 open-reading frame resulting in truncations in the protein of 24-34 aminoacids in length. Thus, this study has demonstrated the utility of monitoring the full genome of influenza viruses to allow the detection of the potentially fittest lineages. This enhances our ability to predict the strain(s) most likely to persist into the following seasons and predict the potential degree of vaccine match or mismatch with the seasonal influenza season for that year. This will enable the public health and clinical teams to prepare for any related healthcare burden, depending on whether the vaccine match is predicted to be good or poor for that season.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links