Introduction. This is an open-label pilot study on four weeks of virgin coconut oil (VCO) to investigate its efficacy in weight reduction and its safety of use in 20 obese but healthy Malay volunteers. Methodology. Efficacy was assessed by measuring weight and associated anthropometric parameters and lipid profile one week before and one week after VCO intake. Safety was assessed by comparing organ function tests one week before and one week after intake of VCO. Paired t-test was used to analyse any differences in all the measurable variables. Results. Only waist circumference (WC) was significantly reduced with a mean reduction of 2.86 cm or 0.97% from initial measurement (P = .02). WC reduction was only seen in males (P < .05). There was no change in the lipid profile. There was a small reduction in creatinine and alanine transferase levels. Conclusion. VCO is efficacious for WC reduction especially in males and it is safe for use in humans.
A cross sectional study of thoracic pedicle morphometry in the immature spine of Malaysian population using reformatted computed tomographic (CT) images.
Distraction osteogeneis over intramedullary nail has a benefit of decreasing the time for external fixation thus reducing the rate of associated complications. However, risk of panosteomyelitis is still the major worry. We are reporting two patients who underwent the procedure. The first case was a 13-year-old girl requiring 6 cm of femoral lengthening and the second case was a 17-year-old girl who required 5 cm of tibial lengthening. The healing index was 19.5 days/cm and 14.8 days/cm respectively, compared favorably to 30 days/cm with traditional method of distraction osteogenesis. There were mild pin tract infections and joint stiffness which responded to non-operative treatment.
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a versatile technology that allows precise modification of genes. One of its most promising applications is in cancer treatment. By targeting and editing specific genes involved in cancer development and progression, CRISPR has the potential to become a powerful tool in the fight against cancer. This review aims to assess the recent progress in CRISPR technology for cancer research and to examine the obstacles and potential strategies to address them. The two most commonly used CRISPR systems for gene editing are CRISPR/Cas9 and CRISPR/Cas12a. CRISPR/Cas9 employs different repairing systems, including homologous recombination (HR) and nonhomologous end joining (NHEJ), to introduce precise modifications to the target genes. However, off-target effects and low editing efficiency are some of the main challenges associated with this technology. To overcome these issues, researchers are exploring new delivery methods and developing CRISPR/Cas systems with improved specificity. Moreover, there are ethical concerns surrounding using CRISPR in gene editing, including the potential for unintended consequences and the creation of genetically modified organisms. It is important to address these issues through rigorous testing and strict regulations. Despite these challenges, the potential benefits of CRISPR in cancer therapy cannot be overlooked. By introducing precise modifications to cancer cells, CRISPR could offer a targeted and effective treatment option for patients with different types of cancer. Further investigation and development of CRISPR technology are necessary to overcome the existing challenges and harness its full potential in cancer therapy.