There is very little information regarding blood changes during the challenge of phospholipase D (PLD) in goats. Therefore, this experiment was conducted to study the changes in blood after the challenge with Corynebacterium pseudotuberculosis and its exotoxin, PLD to fill in the gap of caseous lymphadenitis (CLA) research.
The healing of load-bearing segmental defects in long bones is a challenge due to the complex nature of the weight that affects the bone part and due to bending, shearing, axial, and torsional forces. An innovative porous 3D scaffolds implant of CaCO3aragonite nanocomposite derived from cockle shell was advanced for substitute bone solely for load-bearing cases. The biomechanical characteristics of such materials were designed to withstand cortical bone strength. In promoting bone growth to the implant material, an ideal surface permeability was formed by means of freeze drying and by adding copolymers to the materials. The properties of coating and copolymers supplement were also assessed for bone-implant connection resolutions. To examine the properties of the material in advanced biological system, an experimental trial in an animal model was carried out. Critical sized defect of bone was created in rabbit's radial bone to assess the material for a load-bearing application with a short and extended period assessment with histological evaluation of the incorporated implanted material to the bone of the host. Trials in animal models proved that the material has the capability of enduring load-bearing conditions for long-term use devoid of breaking or generating stress that affects the host bone. Histological examination further confirmed the improved integration of the implanted materials to the host bone with profound bone development into and also above the implanted scaffold, which was attained with negligible reaction of the tissues to a foreign implanted material.
Haptoglobin (Hp) and Serum Amyloid A (SAA) are a group of blood proteins whose concentrations in animals can be influenced by infection, inflammation, surgical trauma or stress. Corynebacterium pseudotuberculosis is the causative agent of caseous lymphadenitis (CLA), and Mycolic acid is a virulent factor extracted from C. pseudotuberculosis. There is a dearth of sufficient evidence on the clinical implication of MAs on the responses of Hp and SAA in goats. Therefore, this study was conducted to evaluate the potential effects of Mycolic acid (MAs) and C. pseudotuberculosis on the responses of Hp and SAA in female goats. A total of 12 healthy female goats was divided into three groups; A, B and C each comprising of 4 goats and managed for a period of three months. Group (A) was inoculated with 2 mL of sterile phosphate buffered saline (as a negative control group) intradermally, while group (B) and (C) were inoculated intradermally with 2 ml each of mycolic acid and 1 × 109 cfu of active C. pseudotuberculosis respectively. The result of the study showed that the Hp concentration in goats inoculated with C. pseudotuberculosis was significantly increased up to 7-fold (1.17 ± 0.17 ng/L) while MAs showed a 3-fold increased (0.83 ± 0.01 ng/L) compared with the control. Whereas SAA concentration in C. pseudotuberculosis and MAs groups showed a significant 3-fold (17.85 ± 0.91 pg/mL) and 2-fold (10.97 ± 0.71 pg/mL) increased compared with the control. This study concludes that inoculation of C. pseudotuberculosis and MAs have significant effects on Hp and SAA levels, which indicates that MAs could have a role in the pathogenesis of caseous lymphadenitis.