Displaying all 7 publications

Abstract:
Sort:
  1. Md Noor J, Eddie EA
    Ultrasound J, 2019 Apr 25;11(1):7.
    PMID: 31359168 DOI: 10.1186/s13089-019-0123-x
    BACKGROUND: Traumatic pneumopericardium is rare and usually results from blunt injury. Diagnosis through clinical and chest X-ray is often difficult. Ultrasound findings of A-line artifacts in the cardiac window may suggest pneumopericardium.

    CASE PRESENTATION: A young man involved in a car accident and sustained blunt thoracic injuries, among others. As part of primary survey, FAST scan was performed. Subxiphoid view to look for evidence of pericardial effusion showed part of the cardiac image obscured by A-lines. Other cardiac windows showed only A-lines, as well. A suspicion of pneumopericardium was raised and CT scan confirmed the diagnosis.

    CONCLUSIONS: Although FAST scan was originally used to look for presence of free fluid, with the knowledge of lung ultrasound for pneumothorax, our findings suggest that FAST scan can also be used to detect pneumopericardium.

  2. Yezid NH, Poh K, Md Noor J, Arshad A
    BMJ Case Rep, 2019 Aug 10;12(8).
    PMID: 31401573 DOI: 10.1136/bcr-2019-230201
    Managing the difficult airway presents a great challenge to anaesthesiologists and emergency physicians. Although there are many methods and scoring systems available to predict and anticipate difficult airway, the dictum in emergency airway is to always expect the unexpected. We have encountered a novel simple method of improving laryngoscopic view in difficult airway. We report four cases of difficult airway encountered in our district hospital from November 2017 to December 2018, in which intubation was performed using a simple manoeuvre called supine left head rotation (LeHeR). In all these cases, LeHeR manoeuvre has proven to be successful after more than a single attempt at intubation using various methods. The manoeuvre improves drastically the laryngoscopic view of Cormack-Lehane from 3B and 4 to 1 and 2.
  3. Hanafi NI, Mohamed AS, Md Noor J, Abdu N, Hasani H, Siran R, et al.
    Genet. Mol. Res., 2016 Jun 17;15(2).
    PMID: 27323195 DOI: 10.4238/gmr.15028150
    Ursodeoxycholic acid (UDCA) is used to treat liver diseases and demonstrates cardioprotective effects. Accumulation of the plasma membrane sphingolipid sphingomyelin in the heart can lead to atherosclerosis and coronary artery disease. Sphingomyelinases (SMases) break down sphingomyelin, producing ceramide, and inhibition of SMases activity can promote cell survival. We hypothesized that UDCA regulates activation of ERK and Akt survival signaling pathways and SMases in protecting cardiac cells against hypoxia. Neonatal cardiomyocytes were isolated from 0- to 2-day-old Sprague Dawley rats, and given 100 μM CoCl2, 150 μM H2O2, or placed in a hypoxia chamber for 24 h. The ameliorative effects of 100-μM UDCA treatment for 12 h were then assessed using MTS, QuantiGene Plex (for Smpd1 and Smpd2), and SMase assays, beating rate assessment, and western blotting (for ERK and Akt). Data were analyzed by the paired Student t-tests and one-way analyses of variance. Cell viability decreased significantly after H2O2 (85%), CoCl2 (50%), and hypoxia chamber (52%) treatments compared to the untreated control (100%). UDCA significantly counteracted the effects of chamber- and CoCl2- induced hypoxia on viability and beating rate. However, no significant differences were observed in acid SMase gene and protein expression between the untreated, CoCl2, and UDCA-CoCl2 groups. In contrast, neutral SMase gene and protein expression did significantly differ between the latter two groups. ERK and Akt phosphorylation was higher in hypoxic cardiomyocytes treated with UDCA than those given CoCl2 alone. In conclusion, UDCA regulates the activation of survival signaling proteins and SMases in neonatal rat cardiomyocytes during hypoxia.
  4. Mohamed AS, Hanafi NI, Sheikh Abdul Kadir SH, Md Noor J, Abdul Hamid Hasani N, Ab Rahim S, et al.
    Cell Biochem Funct, 2017 Oct;35(7):453-463.
    PMID: 29027248 DOI: 10.1002/cbf.3303
    In hepatocytes, ursodeoxycholic acid (UDCA) activates cell signalling pathways such as p53, intracellular calcium ([Ca2+ ]i ), and sphingosine-1-phosphate (S1P)-receptor via Gαi -coupled-receptor. Recently, UDCA has been shown to protect the heart against hypoxia-reoxygenation injury. However, it is not clear whether UDCA cardioprotection against hypoxia acts through a transcriptional mediator of cells stress, HIF-1α and p53. Therefore, in here, we aimed to investigate whether UDCA could protect cardiomyocytes (CMs) against hypoxia by regulating expression of HIF-1α, p53, [Ca2+ ]i , and S1P-Gαi -coupled-receptor. Cardiomyocytes were isolated from newborn rats (0-2 days), and hypoxia was induced by using cobalt chloride (CoCl2 ). Cardiomyocytes were treated with UDCA and cotreated with either FTY720 (S1P-receptor agonist) or pertussis toxin (PTX; Gαi inhibitor). Cells were subjected for proliferation assay, beating frequency, QuantiGene Plex assay, western blot, immunofluorescence, and calcium imaging. Our findings showed that UDCA counteracted the effects of CoCl2 on cell viability, beating frequency, HIF-1α, and p53 protein expression. We found that these cardioprotection effects of UDCA were similar to FTY720, S1P agonist. Furthermore, we observed that UDCA protects CMs against CoCl2 -induced [Ca2+ ]i dynamic alteration. Pharmacological inhibition of the Gαi -sensitive receptor did not abolish the cardioprotection of UDCA against CoCl2 detrimental effects, except for cell viability and [Ca2+ ]i . Pertussis toxin is partially effective in inhibiting UDCA protection against CoCl2 effects on CM cell viability. Interestingly, PTX fully inhibits UDCA cardioprotection on CoCl2 -induced [Ca2+ ]i dynamic changes. We conclude that UDCA cardioprotection against CoCl2 -induced hypoxia is similar to FTY720, and its actions are not fully mediated by the Gαi -coupled protein sensitive pathways. Ursodeoxycholic acid is the most hydrophilic bile acid and is currently used to treat liver diseases. Recently, UDCA is shown to have a cardioprotection effects; however, the mechanism of UDCA cardioprotection is still poorly understood. The current data generated were the first to show that UDCA is able to inhibit the activation of HIF-1α and p53 protein during CoCl2 -induced hypoxia in cardiomyocytes. This study provides an insight of UDCA mechanism in protecting cardiomyocytes against hypoxia.
  5. Shaikh Abdul Karim S, Md Tahir FA, Mohamad UK, Abu Bakar M, Mohamad KN, Suleiman M, et al.
    Int J Emerg Med, 2020 Oct 28;13(1):50.
    PMID: 33115412 DOI: 10.1186/s12245-020-00308-7
    BACKGROUND: During the COVID-19 pandemic, many countries instituted closure of borders from international and local travels. Stranded citizens appeal to their governments to embark on citizen repatriation missions. Between February and April 2020, the Government of Malaysia directed repatriation of its citizens from China, Iran, Italy and Indonesia. We describe the preparation and execution of the repatriation mission using chartered commercial aircraft. The mission objectives were to repatriate as many citizens based on aircraft capacity and prevent onboard transmission of the disease to flight personnel.

    RESULTS: Five repatriation missions performed was led by the National Agency for Disaster Management (NADMA) with the Ministry of Health providing technical expertise. A total of 432 citizens were repatriated from the missions. The operations were divided into four phases: the pre-boarding screening phase, the boarding and in-flight phase, the reception phase and the quarantine phase. The commercial aircraft used were from two different commercial airlines. Each mission had flight crew members between 10 and 17 people. There were 82 positive cases detected among the repatriated citizens. There was a single positive case of a healthcare worker involved in the mission, based on the sample taken on arrival of the flight. There were no infections involving flight team members.

    CONCLUSION: Medical flight crew must be familiar with aircraft fittings that differ from one commercial airline to another as it influences infection control practices. A clear understanding of socio-political situation of a country, transmission routes of a pathogen, disease presentation, and knowledge of aviation procedures, aircraft engineering and design is of great importance in preparing for such missions. Our approach of multidiscipline team involvement managed to allow us to provide and execute the operations successfully.

  6. Md-Sani SS, Md-Noor J, Han WH, Gan SP, Rani NS, Tan HL, et al.
    BMC Infect Dis, 2018 05 21;18(1):232.
    PMID: 29783955 DOI: 10.1186/s12879-018-3141-6
    BACKGROUND: Increasing incidence of dengue cases in Malaysia over the last few years has been paralleled by increased deaths. Mortality prediction models will therefore be useful in clinical management. The aim of this study is to identify factors at diagnosis of severe dengue that predicts mortality and assess predictive models based on these identified factors.

    METHOD: This is a retrospective cohort study of confirmed severe dengue patients that were admitted in 2014 to Hospital Kuala Lumpur. Data on baseline characteristics, clinical parameters, and laboratory findings at diagnosis of severe dengue were collected. The outcome of interest is death among patients diagnosed with severe dengue.

    RESULTS: There were 199 patients with severe dengue included in the study. Multivariate analysis found lethargy, OR 3.84 (95% CI 1.23-12.03); bleeding, OR 8.88 (95% CI 2.91-27.15); pulse rate, OR 1.04 (95% CI 1.01-1.07); serum bicarbonate, OR 0.79 (95% CI 0.70-0.89) and serum lactate OR 1.27 (95% CI 1.09-1.47), to be statistically significant predictors of death. The regression equation to our model with the highest AUROC, 83.5 (95% CI 72.4-94.6), is: Log odds of death amongst severe dengue cases = - 1.021 - 0.220(Serum bicarbonate) + 0.001(ALT) + 0.067(Age) - 0.190(Gender).

    CONCLUSION: This study showed that a large proportion of severe dengue occurred early, whilst patients were still febrile. The best prediction model to predict death at recognition of severe dengue is a model that incorporates serum bicarbonate and ALT levels.

  7. Md Noor J, Hawari R, Mokhtar MF, Yussof SJ, Chew N, Norzan NA, et al.
    Int J Emerg Med, 2020 Feb 07;13(1):6.
    PMID: 32028888 DOI: 10.1186/s12245-020-0264-5
    INTRODUCTION: Methanol poisoning usually occurs in a cluster and initial diagnosis can be challenging. Mortality is high without immediate interventions. This paper describes a methanol poisoning outbreak and difficulties in managing a large number of patients with limited resources.

    METHODOLOGY: A retrospective analysis of a methanol poisoning outbreak in September 2018 was performed, describing patients who presented to a major tertiary referral centre.

    RESULT: A total of 31 patients were received over the period of 9 days. Thirty of them were males with a mean age of 32 years old. They were mostly foreigners. From the 31 patients, 19.3% were dead on arrival, 3.2% died in the emergency department and 38.7% survived and discharged. The overall mortality rate was 61.3%. Out of the 12 patients who survived, two patients had toxic optic neuropathy, and one patient had uveitis. The rest of the survivors did not have any long-term complications. Osmolar gap and lactate had strong correlations with patient's mortality. Serum pH, bicarbonate, lactate, potassium, anion gap, osmolar gap and measured serum osmolarity between the alive and dead patients were significant. Post-mortem findings of the brain were unremarkable.

    CONCLUSION: The mortality rate was higher, and the morbidity includes permanent visual impairment and severe neurological sequelae. Language barrier, severity of illness, late presentation, unavailability of intravenous ethanol and fomipezole and delayed dialysis may have been the contributing factors. Patient was managed based on clinical presentation. Laboratory parameters showed difference in median between group that survived and succumbed for pH, serum bicarbonate, lactate, potassium and osmolar and anion gap. Management of methanol toxicity outbreak in resource-limited area will benefit from a well-designed guideline that is adaptable to the locality.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links