Displaying all 3 publications

Abstract:
Sort:
  1. Mejia Mohamed EH, Tan KS, Ali JM, Mohamed Z
    Ann Acad Med Singap, 2011 Apr;40(4):186-91.
    PMID: 21678004
    INTRODUCTION: The functional point mutation C677T in the methylenetetrahydrofolate reductase (MTHFR) gene, has been reported to contribute to hyperhomocysteinaemia which is a risk factor for atherothrombotic ischaemic strokes. This study evaluated the prevalence of the C677T polymorphism of the gene in Malaysian ischaemic stroke subjects of Malay, Chinese and Indian ethnicities, and its association with homocysteine levels (tHcy).

    MATERIALS AND METHODS: A total of 292 subjects were recruited, comprising 150 ischaemic stroke patients and 142 control subjects who were age and sex matched. Plasma homocysteine, serum folate and vitamin B12 were measured in all subjects. Genotyping was carried out using PCR-RFLP.

    RESULTS: The homocysteine levels were significantly higher (P = 0.001) in the stroke group (11.35 ± 2.75 μmol/L) compared to the control group (10.38 ± 2.79 μmol/L). The MTHFR C677T genotype distribution for the stroke group was 46%, 40% and 14%, respectively for CC, CT and TT genotypes and 59.9%, 33.8% and 6.3%, respectively for the control group. The genotype and allelic frequencies were significantly different between the 2 groups, with P = 0.02 and P = 0.004 respectively. No significant difference was seen in the genotype distribution inter-ethnically. An increasing tHcy was seen with every additional T allele, and the differences in the tHcy for the different genotypes were significant in both the control (P <0.001) and stroke groups (P <0.001).

    CONCLUSION: This study shows that TT genotype of the methylenetetrahydrofolate reductase C677T polymorphic gene is an important determinant for homocysteine levels in Malaysian ischaemic stroke patients.

  2. Cheng KJ, Alshawsh MA, Mejia Mohamed EH, Thavagnanam S, Sinniah A, Ibrahim ZA
    Cell Oncol (Dordr), 2020 Apr;43(2):177-193.
    PMID: 31677065 DOI: 10.1007/s13402-019-00477-5
    BACKGROUND: In recent years, the high mobility group box-1 (HMGB1) protein, a damage-associated molecular pattern (DAMP) molecule, has been found to play multifunctional roles in the pathogenesis of colorectal cancer. Although much attention has been given to the diagnostic and prognostic values of HMGB1 in colorectal cancer, the exact functional roles of the protein as well as the mechanistic pathways involved have remained poorly defined. This systematic review aims to discuss what is currently known about the roles of HMGB1 in colorectal cancer development, growth and progression, and to highlight critical areas for future investigations. To achieve this, the bibliographic databases Pubmed, Scopus, Web of Science and ScienceDirect were systematically screened for articles from inception till June 2018, which address associations of HMGB1 with colorectal cancer.

    CONCLUSIONS: HMGB1 plays multiple roles in promoting the pathogenesis of colorectal cancer, despite a few contradicting studies. HMGB1 may differentially regulate disease-related processes, depending on the redox status of the protein in colorectal cancer. Binding of HMGB1 to various protein partners may alter the impact of HMGB1 on disease progression. As HMGB1 is heavily implicated in the pathogenesis of colorectal cancer, it is crucial to further improve our understanding of the functional roles of HMGB1 not only in colorectal cancer, but ultimately in all types of cancers.

  3. Azizan S, Cheng KJ, Mejia Mohamed EH, Ibrahim K, Faruqu FN, Vellasamy KM, et al.
    Gene, 2024 Feb 20;896:148057.
    PMID: 38043836 DOI: 10.1016/j.gene.2023.148057
    Colorectal cancer (CRC) is ranked as the second leading cause of mortality worldwide, mainly due to metastasis. Epithelial to mesenchymal transition (EMT) is a complex cellular process that drives CRC metastasis, regulated by changes in EMT-associated gene expression. However, while numerous genes have been identified as EMT regulators through various in vivo and in vitro studies, little is known about the genes that are differentially expressed in CRC tumour tissue and their signalling pathway in regulating EMT. Using an integration of systematic search and bioinformatic analysis, gene expression profiles of CRC tumour tissues were compared to non-tumour adjacent tissues to identify differentially expressed genes (DEGs), followed by performing systematic review on common identified DEGs. Fifty-eight common DEGs were identified from the analysis of 82 tumour tissue samples obtained from four gene expression datasets (NCBI GEO). These DEGS were then systematically searched for their roles in modulating EMT in CRC based on previously published studies. Following this, 10 common DEGs (CXCL1, CXCL8, MMP1, MMP3, MMP7, TACSTD2, VIP, HPGD, ABCG2, CLCA4) were included in this study and subsequently subjected to further bioinformatic analysis. Their roles and functions in modulating EMT in CRC were discussed in this review. This study enhances our understanding of the molecular mechanisms underlying EMT and uncovers potential candidate genes and pathways that could be targeted in CRC.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links