Displaying all 4 publications

Abstract:
Sort:
  1. Gao K, Su Z, Meng J, Yao Y, Li L, Su Y, et al.
    Biol Res Nurs, 2024 Jan;26(1):125-138.
    PMID: 37579279 DOI: 10.1177/10998004231195541
    OBJECTIVE: This study aimed to investigate the effects of aerobic interval training and resistance training on anti-inflammatory adipokines, high sensitivity C-reactive protein, and clinical outcomes in sedentary men with metabolic syndrome.

    METHODS: A total of 33 sedentary men with metabolic syndrome (age: 46.2 ± 4.6 years; body mass index: 35.4 ± 1.9 kg.m2) were randomly assigned to one of 3 groups: aerobic interval training (n = 12), resistance training (n = 10), or control (n = 11). Participants in the exercise groups completed a 12-week training program, 3 sessions per week, while those in the control group maintained their sedentary lifestyle. The levels of high sensitivity C-reactive protein (hs-CRP), omentin-1, adiponectin, lipid profiles, blood pressure, glucose metabolism, body composition, and peak oxygen uptake (VO2peak) were measured at baseline and after the intervention.

    RESULTS: Both aerobic interval training and resistance training significantly improved the levels of omentin-1 and adiponectin, as well as reduced inflammation, as indicated by a decrease in hs-CRP levels. Exercise training also led to significant improvements in lipid profiles, blood pressure, glucose metabolism, and body composition. Specifically, the aerobic interval training group had significantly greater increases in high-density lipoprotein cholesterol and VO2peak, as well as greater reductions in low-density lipoprotein cholesterol, triglycerides, and total cholesterol compared to the resistance training group.

    CONCLUSION: Exercise training, particularly aerobic interval training and resistance training, can be an effective non-pharmacological intervention for managing inflammation and improving cardiovascular health in metabolic syndrome patients.

  2. Chen L, Yao XJ, Xu SJ, Yang H, Wu CL, Lu J, et al.
    Arch Virol, 2018 Nov 29.
    PMID: 30498962 DOI: 10.1007/s00705-018-4112-3
    Coxsackievirus A16 (CV-A16) of the genotypes B1a and B1b have co-circulated in mainland China in the past decades. From 2013 to 2017, a total of 3,008 specimens from 3,008 patients with mild hand, foot, and mouth disease were collected in the present study. Viral RNA was tested for CV-A16 by a real-time RT-PCR method, and complete VP1 sequences and full-length genome sequences of CV-A16 strains from this study were determined by RT-PCR and sequencing. Sequences were analyzed using a series of bioinformatics programs. The detection rate for CV-A16 was 4.1%, 25.9%, 10.6%, 28.1% and 12.9% in 2013, 2014, 2015, 2016 and 2017, respectively. Overall, the detection rate for CV-A16 was 16.5% (497/3008) in this 5-year period in Shenzhen, China. One hundred forty-two (142/155, 91.6%) of the 155 genotype B1 strains in the study belonged to subgenotype B1b, and 13 (13/155, 8.4%) strains belonged to subgenotype B1a. Two strains (CVA16/Shenzhen174/CHN/2017 and CVA16/Shenzhen189/CHN/2017) could not be assigned to a known genotype. Phylogenetic analysis of these two strains and other Chinese CV-A16 strains indicated that these two CV-A16 strains clustered independently in a novel clade whose members differed by 8.4%-11.8%, 8.4%-12.1%, and 14.6%-14.8% in their nucleotide sequences from those of Chinese B1a, B1b, and genotype D strains, respectively. Phylogenetic analysis of global CV-A16 strains further indicated that the two novel CV-A16 strains from this study grouped in a previously uncharacterized clade, which was designated as the subgenogroup B3 in present study. Meanwhile, phylogenetic reconstruction revealed two other new genotypes, B1d and B4, which included a Malaysian strain and two American strains, respectively. The complete genome sequences of the two novel CV-A16 strains showed the highest nucleotide sequence identity of 92.3% to the Malaysian strain PM-15765-00 from 2000. Comparative analysis of amino acid sequences of the two novel CV-A16 strains and their relatives suggested that variations in the nonstructural proteins may play an important role in the evolution of modern CV-A16.
  3. Grill G, Lehner B, Thieme M, Geenen B, Tickner D, Antonelli F, et al.
    Nature, 2019 05;569(7755):215-221.
    PMID: 31068722 DOI: 10.1038/s41586-019-1111-9
    Free-flowing rivers (FFRs) support diverse, complex and dynamic ecosystems globally, providing important societal and economic services. Infrastructure development threatens the ecosystem processes, biodiversity and services that these rivers support. Here we assess the connectivity status of 12 million kilometres of rivers globally and identify those that remain free-flowing in their entire length. Only 37 per cent of rivers longer than 1,000 kilometres remain free-flowing over their entire length and 23 per cent flow uninterrupted to the ocean. Very long FFRs are largely restricted to remote regions of the Arctic and of the Amazon and Congo basins. In densely populated areas only few very long rivers remain free-flowing, such as the Irrawaddy and Salween. Dams and reservoirs and their up- and downstream propagation of fragmentation and flow regulation are the leading contributors to the loss of river connectivity. By applying a new method to quantify riverine connectivity and map FFRs, we provide a foundation for concerted global and national strategies to maintain or restore them.
  4. Grill G, Lehner B, Thieme M, Geenen B, Tickner D, Antonelli F, et al.
    Nature, 2019 Aug;572(7768):E9.
    PMID: 31337922 DOI: 10.1038/s41586-019-1379-9
    An Amendment to this paper has been published and can be accessed via a link at the top of the paper.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links