The increasing concentration of CO₂ in the atmosphere has caused significant environmental changes, particularly to the lower plants such as terrestrial algae and lichens that alter species composition, and therefore can contribute to changes in community landscape. A study to understand how increased CO₂ in the atmosphere will affect algal density with minimal adjustment on its natural ecosystem, and the suitability of the algae to be considered as a biomarker, has been conducted. The current work was conducted in the Free-Air-Carbon Dioxide-Enrichment (FACE) system located in Universiti Kebangsaan Malaysia, Bangi, Malaysia. CO₂ was injected through special valves located along the ring surrounding specimen trees where 10 × 10 cm quadrats were placed. A total of 16 quadrats were randomly placed on the bark of 16 trees located inside the FACE system. This system will allow data collection on the effect of increased CO₂ without interfering or changing other parameters of the surrounding environment such as the wind speed, wind direction, humidity, and temperature. The initial density Trebouxia sp. was pre-determined on 1 March 2015, and the final density was taken slightly over a year later, on 15 March 2016. The exposure period of 380 days shed some light in understanding the effect of CO₂ on these non-complex, short life cycle lower plants. The results from this research work showed that the density of algae is significantly higher after 380 days exposure to the CO₂-enriched environment, at 408.5 ± 38.5 × 10⁴ cells/cm², compared to the control site at 176.5 ± 6.9 × 10⁴ cells/cm² (independent t-test, p < 0.001). The distance between the trees and the injector valves is negatively correlated. Quadrats located in the center of the circular ring recorded lower algal density compared to the ones closer to the CO₂ injector. Quadrat 16, which was nearing the end of the CO₂ valve injector, showed an exceptionally high algal density-2-fold higher than the average density at 796 ± 38.5 × 10⁴ cells/cm². In contrast, Quadrat 9, which was located in the center of the ring (lower CO₂ concentration), recorded only 277 ± 38.5 × 10⁴ cells/cm², which further supports the previous claim. Based on the data obtained, this study provides useful data in understanding the positive effect of CO₂ on algal density, in a natural environment, and suggests the use of epiphytic terrestrial algae as a biomarker.
Knowledge about the biogeographic affinities of the world's tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world's tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (i) Indo-Pacific, (ii) Subtropical, (iii) African, (iv) American, and (v) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests.
Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1-6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth's 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world's most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.