Displaying all 5 publications

Abstract:
Sort:
  1. Ong SQ, Ahmad H, Mohd Ngesom AM
    Infect Dis Rep, 2021 Feb 05;13(1):148-160.
    PMID: 33562890 DOI: 10.3390/idr13010016
    We aim to investigate the effect of large-scale human movement restrictions during the COVID-19 lockdown on both the dengue transmission and vector occurrences. This study compared the weekly dengue incidences during the period of lockdown to the previous years (2015 to 2019) and a Seasonal Autoregressive Integrated Moving Average (SARIMA) model that expected no movement restrictions. We found that the trend of dengue incidence during the first two weeks (stage 1) of lockdown decreased significantly with the incidences lower than the lower confidence level (LCL) of SARIMA. By comparing the magnitude of the gradient of decrease, the trend is 319% steeper than the trend observed in previous years and 650% steeper than the simulated model, indicating that the control of population movement did reduce dengue transmission. However, starting from stage 2 of lockdown, the dengue incidences demonstrated an elevation and earlier rebound by four weeks and grew with an exponential pattern. We revealed that Aedes albopictus is the predominant species and demonstrated a strong correlation with the locally reported dengue incidences, and therefore we proposed the possible diffusive effect of the vector that led to a higher acceleration of incidence rate.
  2. Md-Lasim A, Mohd-Taib FS, Abdul-Halim M, Mohd-Ngesom AM, Nathan S, Md-Nor S
    PMID: 34502012 DOI: 10.3390/ijerph18179411
    Pathogenic Leptospira is the causative agent of leptospirosis, an emerging zoonotic disease affecting animals and humans worldwide. The risk of host infection following interaction with environmental sources depends on the ability of Leptospira to persist, survive, and infect the new host to continue the transmission chain. Leptospira may coexist with other pathogens, thus providing a suitable condition for the development of other pathogens, resulting in multi-pathogen infection in humans. Therefore, it is important to better understand the dynamics of transmission by these pathogens. We conducted Boolean searches of several databases, including Google Scholar, PubMed, SciELO, and ScienceDirect, to identify relevant published data on Leptospira and coinfection with other pathogenic bacteria. We review the role of the host-microbiota in determining the synanthropic interaction of Leptospira sp. with other bacteria, thus creating a suitable condition for the leptospira to survive and persist successfully. We also discuss the biotic and abiotic factors that amplify the viability of Leptospira in the environment. The coinfection of leptospira with pathogenic bacteria has rarely been reported, potentially contributing to a lack of awareness. Therefore, the occurrence of leptospirosis coinfection may complicate diagnosis, long-lasting examination, and mistreatment that could lead to mortality. Identifying the presence of leptospirosis with other bacteria through metagenomic analysis could reveal possible coinfection. In conclusion, the occurrence of leptospirosis with other diseases should be of concern and may depend on the success of the transmission and severity of individual infections. Medical practitioners may misdiagnose the presence of multiple infections and should be made aware of and receive adequate training on appropriate treatment for leptospirosis patients. Physicians could undertake a more targeted approach for leptospirosis diagnosis by considering other symptoms caused by the coinfected bacteria; thus, more specific treatment could be given.
  3. Abdul Rahim FA, Abdul Mutalip MH, Mohd Ngesom AM, Mahmud MAF, Yoep N
    PLoS One, 2024;19(7):e0306776.
    PMID: 38968218 DOI: 10.1371/journal.pone.0306776
    BACKGROUND: Despite significant reductions in recent malaria cases and deaths globally, the persistence of this health concern necessitates a shift from traditional top-down approaches. Consequently, malaria control initiatives increasingly focus on empowering local communities through community-centred strategies. Therefore, this scoping review protocol systematically explores diverse community knowledge approaches adopted in malaria programmes worldwide and their associated outcomes.

    METHODS: Adhering rigorously to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines, a comprehensive scoping review protocol was developed. Collaborating with a research librarian, a systematic search strategy targeted peer-reviewed literature from databases such as PubMed, Embase, Scopus, and Web of Science, complemented by a thorough grey literature search. Titles and abstracts will be screened, followed by extracting bibliographic details and outcome information using a standardized framework. Subsequently, the results will be systematically summarized and presented in a structured tabular format (S1 Checklist).

    DISCUSSION: This scoping review promises an in-depth understanding of current research regarding the impact of community knowledge in malaria programmes. The identification of knowledge gaps and intervention needs serves as a valuable resource for malaria-affected countries. The profound implications of community knowledge underscore its pivotal role in enhancing the effectiveness of prevention, control, and elimination efforts. Insights from this review will assist policymakers, empowering implementers and community leaders in designing effective interventions. This concerted effort aims to adeptly leverage community knowledge, thereby propelling progress toward the achievement of malaria elimination goals.

  4. Md Lasim A, Mohd Ngesom AM, Nathan S, Abdul Razak F, Abdul Halim M, Mohd-Saleh W, et al.
    PeerJ, 2024;12:e17096.
    PMID: 38699181 DOI: 10.7717/peerj.17096
    BACKGROUND: Leptospirosis is a water-related zoonotic disease. The disease is primarily transmitted from animals to humans through pathogenic Leptospira bacteria in contaminated water and soil. Rivers have a critical role in Leptospira transmissions, while co-infection potentials with other waterborne bacteria might increase the severity and death risk of the disease.

    METHODS: The water samples evaluated in this study were collected from four recreational forest rivers, Sungai Congkak, Sungai Lopo, Hulu Perdik, and Gunung Nuang. The samples were subjected to next-generation sequencing (NGS) for the 16S rRNA and in-depth metagenomic analysis of the bacterial communities.

    RESULTS: The water samples recorded various bacterial diversity. The samples from the Hulu Perdik and Sungai Lopo downstream sampling sites had a more significant diversity, followed by Sungai Congkak. Conversely, the upstream samples from Gunung Nuang exhibited the lowest bacterial diversity. Proteobacteria, Firmicutes, and Acidobacteria were the dominant phyla detected in downstream areas. Potential pathogenic bacteria belonging to the genera Burkholderiales and Serratia were also identified, raising concerns about co-infection possibilities. Nevertheless, Leptospira pathogenic bacteria were absent from all sites, which is attributable to its limited persistence. The bacteria might also be washed to other locations, contributing to the reduced environmental bacterial load.

    CONCLUSION: The present study established the presence of pathogenic bacteria in the river ecosystems assessed. The findings offer valuable insights for designing strategies for preventing pathogenic bacteria environmental contamination and managing leptospirosis co-infections with other human diseases. Furthermore, closely monitoring water sample compositions with diverse approaches, including sentinel programs, wastewater-based epidemiology, and clinical surveillance, enables disease transmission and outbreak early detections. The data also provides valuable information for suitable treatments and long-term strategies for combating infectious diseases.

  5. Mohd Ngesom AM, Ahmad Razi A, Azizan NS, Wasi Ahmad N, Md Lasim A, Liang Y, et al.
    Parasit Vectors, 2021 Aug 18;14(1):413.
    PMID: 34407881 DOI: 10.1186/s13071-021-04918-9
    BACKGROUND: Dengue is a significant public health issue that is caused by Aedes spp. mosquitoes. The current vector control methods are unable to effectively reduce Aedes populations and thus fail to decrease dengue transmission. Hence, there is an urgent need for new tools and strategies to reduce dengue transmission in a wide range of settings. In this study, the Mosquito Home System (MHS) and Mosquito Home Aqua (MHAQ) formulations were assessed as commercial autodissemination traps in laboratory and small-scale field trials.

    METHOD: Multiple series of laboratory and small-scale field trials were performed to assess the efficacy of MHS and MHAQ exposed to Ae. aegypti. In the laboratory trials, various parameters such as fecundity, fertility, wing size, oviposition preferences, residual effects, and MHAQ transference to other containers through controlled experiments were tested. For small-scale field trials, the efficacy of the MHS and MHAQ approaches was determined to ascertain whether wild mosquitoes could transfer the MHAQ formulation from MHS stations to ovitraps.

    RESULTS: The data revealed that Ae. aegypti was highly susceptible to low concentrations of MHAQ formulations and had a residual effect of up to 3 months, with MHAQ exposure affecting fecundity, fertility, and mosquito wing size. In the oviposition studies, gravid females strongly preferred the hay infusion compared to tap water and MHAQ during egg-laying in the laboratory. Nevertheless, the use of commercial MHAQ by MHS was highly attractive in field settings compared to conventional ovitraps among local Aedes spp. mosquitoes. In addition, MHAQ horizontal transfer activities in the laboratory and small-scale field trials were demonstrated through larval bioassays. These findings demonstrated the potential of MHAQ to be transferred to new containers in each study site.

    CONCLUSION: This study provided proof of principle for the autodissemination of MHAQ. Through further refinement, this technique and device could become an effective oviposition trap and offer an alternative preventive tool for vector control management.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links