Chitosan/zeolite-X (CHS/ZX) was synthesized to serve as an effective adsorbent for metal porphyrins through adsorption processes as an alternative to traditional separation methods from crude oil. The adsorption-desorption mechanisms of vanadyl and nickel tetraphenyl porphyrin (VO-TPP and Ni-TPP) were conducted on the model solution. Compared to individual components CHS and ZX, the CHS/ZX composite exhibited a doubled capacity for metal porphyrin removal. The synthesized composite was systematically characterized using FESEM, BET, XRD, FTIR, TGA, XPS, and CHN analyses. The study investigated the impact of many factors, including temperature, initial metal-porphyrin concentration, CHS/ZX dose, and contact time, on the adsorption efficiency of metal-porphyrin using CHS/ZX adsorbents. The adsorption processes of VO-TPP and Ni-TPP on CHS/ZX were effectively assessed through various equilibrium models, such as Langmuir, Freundlich, and Dubinin-Radushkevich (D-R). The pseudo-second-order model accurately depicted the adsorption processes of both VO-TPP and Ni-TPP. Determining the point of zero charge (pHPZC) highlighted the composite's surface charge distribution. Furthermore, considering the ΔG° and ΔH° values, the adsorption processes at different temperatures are exothermic, and VO-TPP exhibits a greater adsorption capacity than Ni-TPP under similar conditions. Notably, 73.7 % of VO-TPP and 83.8 % of Ni-TPP that were adsorbed were successfully recovered.
The by-product of the previous transesterification, glycerol was utilised as an acid catalyst precursor for biodiesel production. The crude glycerol was treated through the sulfonation method with sulfuric acid and chlorosulfonic acid in a reflux batch reactor giving solid glycerol-SO3H and glycerol-ClSO3H, respectively. The synthesised acidic glycerol catalysts were characterised by various analytical techniques such as thermalgravimetric analyser (TGA), infrared spectroscopy, surface properties adsorption-desorption by nitrogen gas, ammonia-temperature programmed desorption (NH3-TPD), X-ray diffraction spectroscopy (XRD), elemental composition analysis by energy dispersive spectrometer (EDX) and surface micrographic morphologies by field emission electron microscope (FESEM). Both glycerol-SO3H and glycerol-ClSO3H samples exhibited mesoporous structures with a low surface area of 8.85 mm2/g and 4.71 mm2/g, respectively, supported by the microscopic image of blockage pores. However, the acidity strength for both catalysts was recorded at 3.43 mmol/g and 3.96 mmol/g, which is sufficient for catalysing PFAD biodiesel at the highest yield. The catalytic esterification was optimised at 96.7% and 98.2% with 3 wt.% of catalyst loading, 18:1 of methanol-PFAD molar ratio, 120 °C, and 4 h of reaction. Catalyst reusability was sustained up to 3 reaction cycles due to catalyst deactivation, and the insight investigation of spent catalysts was also performed.
A rapid growth in the development of power generation and transportation sectors would result in an increase in the carbon dioxide (CO2) concentration in the atmosphere. As it will continue to play a vital role in meeting current and future needs, significant efforts have been made to address this problem. Over the past few years, extensive studies on the development of heterogeneous catalysts for CO2 methanation have been investigated and reported in the literatures. In this paper, a comprehensive overview of methanation research studies over lanthanide oxide catalysts has been reviewed. The utilisation of lanthanide oxides as CO2 methanation catalysts performed an outstanding result of CO2 conversion and improvised the conversion of acidity from CO2 gas to CH4 gas. The innovations of catalysts towards the reaction were discussed in details including the influence of preparation methods, the structure-activity relationships as well as the mechanism with the purpose of outlining the pathways for future development of the methanation process.
The world faces the challenge to produce ultra-low sulfur diesel with low-cost technology. Therefore, this research emphasised on production of low sulfur fuel utilising nanoparticle catalyst under mild condition. A small amount of cobalt oxide (10-30 wt%) was introduced into the Fe/Al2O3 catalyst through the wet impregnation method. Cobalt modification induces a positive effect on the performance of the iron catalyst. Hence, the insertion of cobalt species into Fe/Al2O3 led to the formation of lattice fringes in all directions which resulted in the formation of Co3O4 and Fe3O4 species. The optimised catalyst, Co/Fe-Al2O3, calcined at 400 °C with a dopant ratio of 10:90 indicating the highest desulfurisation activity by removing 96% of thiophene, 100% of dibenzothiophene (DBT) and 92% of 4,6-dimethyl dibenzothiophene (4,6-DMDBT). Based on the density functional theory (DFT) on Co/Fe-Al2O3, two pathways with the overall energy of -40.78 eV were suggested for the complete oxidation of DBT.