Displaying all 10 publications

Abstract:
Sort:
  1. Okekpa SI, S. M. N. Mydin RB, Ganeson S, Gopalan S, Musa MY
    Asian Pac J Cancer Prev, 2020 08 01;21(8):2183-2187.
    PMID: 32856842 DOI: 10.31557/APJCP.2020.21.8.2183
    Heated debates have been on-going about tea consumption and the incidence of cancer, especially in head and
    neck cancer types. This study aimed to review the association between tea consumption habits and nasopharyngeal
    cancer (NPC). Methods: This review was carried out in accordance with the PRISMA-P protocol. Literature search
    for journal articles that published studies on the relationship between tea consumption and NPC was performed via
    databases, such as Elsevier, PubMed, Science Direct, Springer Link, Google, and Google Scholar, for 10 years from
    2008 to 2018. Relevant studies were obtained by applying the pre-determined keywords, such as nasopharyngeal cancer,
    tea consumption and NPC, risk factors of NPC and benefits of tea consumption. Results: A total of 126 articles was
    retrieved. These articles were subjected to eligibility assessment. Six articles remained after applying the inclusion
    criteria. Results suggest that habitual tea consumption reduces NPC. Tea consumption significantly reduces NPC with
    all the studies having a p-value ≤0.05. Meta-analysis showed statistical association between tea consumption and NPC
    risk with OR=0.865 at 95% CI (0.806-0.929). Conclusion: This study suggests that habitual tea consumption could
    be associated with prevention of NPC development. Additional studies are needed to further understand the molecular
    role of bioactive compound and potential health benefit of tea consumption in NPC prevention.
  2. Smn Mydin RB, Sreekantan S, Hazan R, Farid Wajidi MF, Mat I
    Oxid Med Cell Longev, 2017;2017:3708048.
    PMID: 28337249 DOI: 10.1155/2017/3708048
    Cell growth and proliferative activities on titania nanotube arrays (TNA) have raised alerts on genotoxicity risk. Present toxicogenomic approach focused on epithelial HT29 cells with TNA surface. Fledgling cell-TNA interaction has triggered G0/G1 cell cycle arrests and initiates DNA damage surveillance checkpoint, which possibly indicated the cellular stress stimuli. A profound gene regulation was observed to be involved in cellular growth and survival signals such as p53 and AKT expressions. Interestingly, the activation of redox regulator pathways (antioxidant defense) was observed through the cascade interactions of GADD45, MYC, CHECK1, and ATR genes. These mechanisms furnish to protect DNA during cellular division from an oxidative challenge, set in motion with XRRC5 and RAD50 genes for DNA damage and repair activities. The cell fate decision on TNA-nanoenvironment has been reported to possibly regulate proliferative activities via expression of p27 and BCL2 tumor suppressor proteins, cogent with SKP2 and BCL2 oncogenic proteins suppression. Findings suggested that epithelial HT29 cells on the surface of TNA may have a positive regulation via cell-homeostasis mechanisms: a careful circadian orchestration between cell proliferation, survival, and death. This nanomolecular knowledge could be beneficial for advanced medical applications such as in nanomedicine and nanotherapeutics.
  3. Effendy WNFWE, S M N Mydin RB, Gazzali AM, Sreekantan S
    Adv Pharm Bull, 2023 Jan;13(1):104-112.
    PMID: 36721810 DOI: 10.34172/apb.2023.011
    Pupose: Cisplatin (CDDP), while amongst the recognised chemotherapeutic drugs currently available, is known to have limitations; the lack of a single treatment approach and non-specific targeted therapies. Therefore, the development of an innovative strategy that could achieve localised CDDP treatment is an urgent undertaking. Recent advances in titania nanotube arrays (TNAs) technology have demonstrated promising applications for localised chemotherapeutic drug treatment. The present work investigated the efficiency of a TNA nanosystem for the localised CDDP treatment of nasopharyngeal carcinoma (NPC). Methods: Two models of the TNA nanosystem were prepared: CDDP loaded onto the TNA nanosystem surface (CDDP-TNA) and the other consisted of chitosan-coated CDDP-TNA. CDDP release from these two nanosystems was comprehensively tested on the NPC cells NPC/HK-1 and C666-1. The NPC cytotoxicity profile of the two CDDP-TNA nanosystems was evaluated after incubation for 24, 48 and 72 hours. Intracellular damage profiles were studied using fluorescence microscopy analysis with Hoechst 33342, acridine orange and propidium iodide. Results: The half-maximal inhibitory concentrations (IC50) of CDDP at 24 hours were 0.50 mM for NPC/HK-1 and 0.05 mM for C666-1. CDDP in the CDDP-TNA and chitosan-coated CDDPTNA models presented a significant degree of NPC inhibition (P<0.05) after 24, 48 and 72 hours of exposure. The outcome revealed cellular damage and shrinkage of the cell membranes after 48 hours of exposure to CDDP-TNA. Conclusion: This in vitro work demonstrated the effectiveness of TNA nanosystems for the localised CDDP treatment of NPC cells. Further in vivo studies are needed to support the findings.
  4. S M N Mydin RB, Azlan A, Okekpa SI, Gooderham NJ
    Cell Biochem Funct, 2024 Mar;42(2):e3945.
    PMID: 38362935 DOI: 10.1002/cbf.3945
    MicroRNAs (miRNA) are small and conserved noncoding RNA molecules that regulate gene expression at the posttranscriptional level. These groups of RNAs are crucial in various cellular processes, especially in mediating disease pathogenesis, particularly cancer. The dysregulation of miRNAs was reported in many cancer types, including nasopharyngeal cancer (NPC), which is a malignant tumor of the nasopharynx. In this review, miRNAs involvement in crucial signaling pathways associated with NPC such as PTEN/PI3K/AKT, TGFβ/SMAD, RAS/MAPK, Wnt/β-catenin and pRB-E2F was investigated. miRNAs could function as tumor suppressor-miR or onco-miR in NPC profoundly influenced cell cycle, apoptosis, proliferation, migration, and metastasis. This comprehensive review of current literature provided a thorough profile of miRNAs and their interplay with the aforementioned signaling pathways in NPC. Understanding these molecular interactions could remarkably impact the diagnosis, prognosis, and therapeutic strategies for NPC.
  5. Saravanan C, S M N Mydin RB, Mohamed Sheriff NR, Kaur G, Singh Dhaliwal S, Musa MY
    Clin Chim Acta, 2025 Jan 15;565:119952.
    PMID: 39216814 DOI: 10.1016/j.cca.2024.119952
    Salivaomics is a promising method for the early detection and monitoring of head and neck cancer (HNC). By analyzing salivary proteomics, RNA, and DNA, it identifies biomarkers that distinguish HNC patients from healthy individuals. Saliva's non-invasive, easily collectible nature and affordability make it an advantageous screening tool. Multiomics approaches, which explore genetic mutations, gene expression patterns, protein profiles, and metabolite levels, provide a comprehensive molecular perspective that enhances clinical applicability. The approaches enhance the precision of diagnoses, enable the development and application of targeted therapies, and contribute to the overall advancement of personalized medicine. Despite its potential, larger-scale studies are essential for validating biomarkers, and assessing sensitivity, accuracy, and specificity in detecting HNC. This review highlights salivaomics' potential as a non-invasive, accessible biological sample for early disease detection in HNC and underscores the value of multiomics in advancing this research. Salivaomics offers significant insights into the underlying mechanisms of HNC, enabling the discovery of robust, non-invasive biomarkers for improved disease management.
  6. Haji Noor Mohamed NM, S M N Mydin RB, Che Halim H, Musa MY
    Indian J Otolaryngol Head Neck Surg, 2023 Dec;75(4):4151-4157.
    PMID: 37974670 DOI: 10.1007/s12070-023-03905-z
    BACKGROUND: Nasopharyngeal cancer (NPC) is a type of malignancy that is highly prevalent in Asian countries. Therefore, an understanding between NPC epidemiological trend, the clinico-pathological and aetiological profiles are needed. This systematic review focuses on asian countries demographic and clinico-pathological presentation reported in 9982 NPC cases diagnosed from the year 2010 to 2021.

    METHODOLOGY: Data were extracted from databases, such as PubMed, Springer Link, Science Direct, Google Scholar and general search engines, by using pre-determined keywords (e.g. clinico-pathological data, age, sex, tumour stage, nasopharyngeal cancer, nasopharyngeal carcinoma, naso-pharynx and cancer in Asia).

    RESULTS AND CONCLUSION: Findings from our systematic review shows that from 2010 to 2021, males in age range below 50 years old are at a higher risk of developing NPC in Asia. NPC is mostly diagnosed at advanced stage in Asia, which is likely due to the deep-seated location of the cancer. Type III NPC and EBV proteins (EBNA1 and LMP2A) are frequently associated with reported EBV-positive NPC cases in Asian countries. Meanwhile, NPC type I, II, and III are associated with EBV-negative NPC cases in Asia. Human leucocyte antigen (HLA) alleles (A2, B27, and B46) are frequently present in reported EBV-negative NPC cases in Asia. In Asia, males below 50 years old are more prone to NPC and often diagnosed at late stage. EBV-positive and EBV-negative NPC in Asia have unique histological profiles. Systemic approach of this study may help to provide better knowledge on reported NPC cases especially on the risk factors and clinical presentation focusing in Asian countries.

  7. Saharudin KA, Sreekantan S, Abd Aziz SN, Hazan R, Lai CW, Mydin RB, et al.
    J Nanosci Nanotechnol, 2013 Mar;13(3):1696-705.
    PMID: 23755576
    The present study deals with surface modification of Ti6Al4V alloy via anodization technique. The morphology, structure, adhesion and bioactivity of Ti6Al4V alloy after anodization process were investigated in detail. The influence of fluoride content and direct circuit (DC) applied voltage during anodization of Ti6Al4V alloy in a bath with electrolytes composed of ethylene glycol (EG) and ammonium fluoride (NH4F) were considered. It was found that the average pore sizes and length of nanoporous or nanotubes were increasing with the fluoride content and applied voltage. A minimum of 3 wt% of NH4F is required to grow a self-organized nanotube arrays. As the fluoride content was increased to 5 wt%, TiO2 nanotubes with average diameter of 110 nm and 3.4 microm lengths were successfully synthesized. It is noteworthy to point out that the rate of the nanotube formation was increasing up to 9 microm thick bioactive TiO2 nanotubes layer as anodization time was increased to 3 h. Based on the results obtained, the PA6 cells cultured on anodic Ti6Al4V alloy showed highest level of cell viability and greater cell adhesion compared to the flat Ti6Al4V foil substrate. In fact, highly ordered nanotubes structure on Ti6Al4V alloy can provide beneficial effects for PA6 cells in attachment and proliferation.
  8. Okekpa SI, S M N Mydin RB, Mangantig E, Azmi NSA, Zahari SNS, Kaur G, et al.
    Asian Pac J Cancer Prev, 2019 Nov 01;20(11):3505-3514.
    PMID: 31759378 DOI: 10.31557/APJCP.2019.20.11.3505
    OBJECTIVE: Risk factors of nasopharyngeal carcinoma (NPC) have been linked with diets, life style and viral
    infections. NPC is more rampant in Asian populations than non-Asian countries. Our study aims to assess the validity
    of the suggestions provided by multiple case control studies demonstrating that salted fish consumption, smoking and
    alcohol consumption are associated with the risk of NPC in Asia.

    METHODS: Search for related literature on salted fish,
    smoking and alcohol consumption were performed via Science Direct, PubMed databases and Google Scholar. Articles
    included in this study were from 2009 to 2017, with specific focus on salted fish, smoking and alcohol consumption
    as risk factors of NPC. This study excluded all articles published prior to 2009 and articles involving other cancers.
    Data were extracted independently by two different researchers and harmonized. Meta-analysis was conducted on the
    obtained data, by using R package Meta to create funnel and forest plots.

    RESULTS: The meta-analysis revealed that
    salted fish, smoking and alcohol consumption were significantly associated to NPC risk with random effect model score
    showing OR of 1.41 at 95% confidence interval (CI) of 1.13-1.75 (P<0.01), OR of 1.89 at 95 % CI of 1.49 - 2.38, and
    OR: 1.42 at 95 % CI of 1.23 - 1.65 respectively. Our results also revealed significant association of salted meat, salted
    vegetables, house type, wood dust exposure associated with NPC risk with p values less than 0.05.

    CONCLUSION: This
    study proposes that salted fish intake, smoking and alcohol consumption might be linked to NPC risk in Asians. Further
    studies are necessary to ascertain the molecular mechanisms and clarify if the associated path that could function as
    therapeutic target.

  9. Saharudin KA, Sreekantan S, Basiron N, Khor YL, Harun NH, S M N Mydin RB, et al.
    Polymers (Basel), 2018 Aug 06;10(8).
    PMID: 30960803 DOI: 10.3390/polym10080878
    Metal oxide-polymer nanocomposite has been proven to have selective bactericidal effects against the main and common pathogens (Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli)) that can cause harmful infectious diseases. As such, this study looked into the prospect of using TiO₂/ZnO with linear low-density polyethylene (LLDPE) to inactivate S. aureus and E. coli. The physical, structural, chemical, mechanical, and antibacterial properties of the nanocomposite were investigated in detail in this paper. The production of reactive species, such as hydroxyl radicals (•OH), holes (h⁺), superoxide anion radicals (O₂•¯), and zinc ion (Zn2+), released from the nanocomposite were quantified to elucidate the underlying antibacterial mechanisms. LLDPE/25T75Z with TiO₂/ZnO (1:3) nanocomposite displayed the best performance that inactivated S. aureus and E. coli by 95% and 100%, respectively. The dominant reactive active species and the zinc ion release toward the superior antibacterial effect of nanocomposite are discussed. This work does not only offer depiction of the effective element required for antimicrobial biomedical appliances, but also the essential structural characteristics to enhance water uptake to expedite photocatalytic activity of LLDPE/metal oxide nanocomposite for long term application.
  10. Abdul Kadir FFN, Che Nordin MA, S M N Mydin RB, Choong YS, Che Omar MT
    J Biomol Struct Dyn, 2024;42(22):12293-12303.
    PMID: 37837430 DOI: 10.1080/07391102.2023.2269254
    Elevated interleukin 8 (IL-8) expression has been linked to unfavorable outcomes in a range of inflammatory conditions, such as rheumatoid arthritis, psoriasis, and cancer. The human monoclonal antibody (HuMab) 10F8 and the hybridoma 35B11-B bind to an epitope on human IL-8, respectively. 10F8 inhibited interaction between IL-8 and neutrophils in eczema and pustulosis palmoplantaris patients while 35B11-B decreased size lesion in rat model. The binding interaction of monoclonal antibodies and IL-8, especially how complementarity-determining region (CDR) loops could bind the N-terminal of IL-8, has not been fully deliberated at molecular-level. Here, we used a combination of molecular docking, heated and long coarse-grained molecular dynamics simulations to identify key residues of established interaction. Based on heated MD simulation, docked pose of complexes generated by ClusPro showed good binding stability throughout of 70 ns simulation. Based on long molecular dynamic simulations, key residues for the binding were identified throughout of 1000 ns simulation. TYR-53, ASP-99, and ARG-100 of heavy chain CDR together with TYR-33 of light chain CDR are among the highest contributing energy residues within the binding interaction. Meanwhile, LYS11 and TYR13 of IL-8 are important for the determination of overall binding energy. Furthermore, the result of decomposition residues analysis is in good agreement with the interaction analysis data. Current study provides a list of important interacting residues and further scrutiny on these residues is essential for future development and design of a new and stable recombinant antibody against IL-8.Communicated by Ramaswamy H. Sarma.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links