Displaying all 4 publications

Abstract:
Sort:
  1. Nabi A, Jesudason CG, Sabir JSM, Kamli MR
    Pharmaceuticals (Basel), 2023 Aug 22;16(9).
    PMID: 37764995 DOI: 10.3390/ph16091187
    This study was aimed at establishing the interactions prevailing in an anionic surfactant, sodium dodecyl sulfate, and dopamine hydrochloride in an alcoholic (ethanol) media by using volumetric, conductometric, and tensiometric techniques. Various methods were utilized to estimate the critical micelle concentration (cmc) values at different temperatures. The entire methods yielded the same cmc values. The corresponding thermodynamic parameters viz. the standard free energy of micellization (Gmico), enthalpy of micellization (Hmico), and entropy of micellization (Smico) were predicted by applying the pseudo-phase separation model. The experimental density data at different temperatures (298.15 K, 303.15 K, 308.15 K, and 313.15 K) were utilized to estimate the apparent molar volumes (Vϕo) at an infinite dilution, apparent molar volumes (Vφcmc) at the critical micelle concentration, and apparent molar volumes (ΔVφm) upon micellization. Various micellar and interfacial parameters, for example, the surface excess concentration (Γmax), standard Gibbs free energy of adsorption at the interface (ΔGoad), and the minimum surface area per molecule (Amin), were appraised using the surface tension data. The results were used to interpret the intermolecular interactions prevailing in the mixed systems under the specified experimental conditions.
  2. Farina Y, Munawar N, Abdullah MP, Yaqoob M, Nabi A
    Environ Monit Assess, 2018 Jun 09;190(7):386.
    PMID: 29884954 DOI: 10.1007/s10661-018-6762-8
    Occurrence and distribution of organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), and pyrethroid pesticides (PYRs) residues in the leafy vegetables were analyzed together with the soil samples using gas chromatography-electron capture detector. Edible tissues of vegetables showed detectable residues of these compounds indicating the influence of the conventional farms and nearby organic farms. In the vegetables, the OCPs concentrations were recorded as nd-133.3 ng/g, OPPs as nd-200 ng/g, and PYRs as nd-33.3 ng/g. In the soil, the OCPs concentrations were recorded as nd-30.6 ng/g, OPPs as nd-26.6 ng/g, and for PYRs as nd-6.7 ng/g. Bioconcentration factor (BCF) was higher for the OPPs (0.3) than the OCPs and PYRs (1.1). The OCPs concentration in the vegetables decreased in the following order: spinach > celery > broccoli > cauliflower > cabbage > lettuce > mustard. For OPPs, the concentration decreased in the following order: cauliflower > spinach > celery > cabbage > broccoli > lettuce > mustard and for PYRs as spinach > celery > lettuce > cabbage > broccoli. Principal component analysis indicates that the sources of these pesticides are not the same, and the pesticide application on the vegetables depends on the type of crop. There is a significant positive correlation between OPPs and the soil (r = 0.65) as compared to OCPs and PYRs (r = 0.1) as the vegetables accumulated OPPs more efficiently than OCPs and PYRs.
  3. Shiekh RA, Malik MA, Al-Thabaiti SA, Wani MY, Nabi A
    ScientificWorldJournal, 2014;2014:404617.
    PMID: 24772018 DOI: 10.1155/2014/404617
    2-Phenyl-N,N'-bis(pyridin-4-ylcarbonyl)butanediamide ligand with a series of transition metal complexes has been synthesized via two routes: microwave irradiation and conventional heating method. Microwave irritation method happened to be the efficient and versatile route for the synthesis of these metal complexes. These complexes were found to have the general composition M(L)Cl2/M(L)(CH3COO)2 (where M = Cu(II), Co(II), Ni(II), and L = ligand). Different physical and spectroscopic techniques were used to investigate the structural features of the synthesized compounds, which supported an octahedral geometry for these complexes. In vitro antifungal activity of the ligand and its metal complexes revealed that the metal complexes are highly active compared to the standard drug. Metal complexes showed enhanced activity compared to the ligand, which is an important step towards the designing of antifungal drug candidates.
  4. Showkat M, Narayanappa N, Umashankar N, Saraswathy BP, Doddanagappa S, Ashraf S, et al.
    J Basic Microbiol, 2024 Aug 29.
    PMID: 39210579 DOI: 10.1002/jobm.202400409
    Cordyceps militaris, a medicinal fungus, has gained considerable attention owing to its potential health benefits, notably the production of bioactive compounds such as cordycepin. Cordycepin possesses significant antifungal, antibacterial, and antiviral properties. The present study focused on optimizing the fermentation conditions for C. militaris to boost the production of mycelia and cordycepin, alongside investigating its antifungal properties using in silico and in vitro approaches. The optimal conditions, yielding the highest cordycepin and mycelial biomass, were a temperature of 20°C and a pH range of 4-6, with glucose and sucrose as carbon sources and yeast extract and casein hydrolysate as nitrogen sources. Under these conditions, cordycepin production peaked at low pH (600-1000 mg/L) and with carbon and maltose (400-500 mg/L). The low temperature favored cordycepin production (400 mg/L), whereas casein hydrolysate as a nitrogen source boosted cordycepin yield (600 mg/L). The docking analysis indicated that cordycepin had the highest binding affinity for the tubulin beta chain 2 (-10.4 kcal/mol) compared to the fungicide tebuconazole (-7.9 kcal/mol for both targets). The in silico results were corroborated by in vitro studies, where the mycelial extract of C. militaris inhibited approximately 75% of fungal growth at a concentration of 6000 ppm. These findings suggest that optimizing fermentation conditions significantly enhances cordycepin production, and cordycepin shows antifungal solid activity, making it a promising agent for biocontrol in agriculture.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links