Fermented bamboo shoots are rich in high protein, carbohydrates, fibre and minerals while low in fat content. In the North-East region of India and other Asian countries, they are mostly used in various food preparations. The present study was undertaken to explore the diversity of bacteria associated with Bamboo shoots and to evaluate their antibacterial profile. Based on the results the fermented bamboo shoots showed viable counts ranging from 6.55 ± 0.91 log CFU/g to 7.86 ± 1.21 log CFU/g. The 16s rRNA sequence analysis showed that these isolates belonged to the genus Bacillus (Bacillus safensis, B. tequilensis, B. siamensis, B. nakamurai, B. subtilis) and Enterobacter. These isolates have not been reported previously from fermented bamboo shoots except B. subtilis. Surprisingly, no Lactobacillus species or molds were found in any of the samples tested. Potent antibacterial activity was recorded against Klebsiella, Staphylococcus aureus, Salmonella and B. cereus.
This study deals with an experimental investigation to assess the characteristics of a modified common rail direct injection (CRDI) engine utilizing diesel, Mahua biodiesel, and their blends with synthesized zinc oxide (ZnO) nano additives. The physicochemical properties of diesel, diesel + 30 ppm ZnO nanoparticles (D10030), 20% Mahua biodiesel (MOME20), and Mahua biodiesel (20%) + 30 ppm ZnO nanoparticles (MOME2030) were measured in accordance to the American Society for Testing and Materials standards. The effects of modification of fuel injectors (FI) holes (7-hole FI) and toroidal reentrant combustion chamber (TRCC) piston bowl design on the performance of CRDI using different fuel blends were assessed. For injection timings (IT) and injection opening pressure (IOP) average increase in brake thermal efficiency for fuel blend D10030 and MOME2030 was 9.65% and 16.4%, and 8.83% and 5.06%, respectively. Also, for IT and IOP, the average reductions in brake specific fuel consumption, smoke, carbon monoxide, hydrocarbon and nitrogen oxide emissions for D10030 and MOME2030 were 10.9% and 7.7%, 18.2% and 8.6%, 12.6% and 11.5%, 8.74% and 13.1%, and 5.75% and 7.79%, respectively and 15.5% and 5.06%, 20.33% and 6.20%, 11.12% and 24.8%, 18.32% and 6.29%, and 1.79% and 6.89%, respectively for 7-hole fuel injector and TRCC. The cylinder pressure and heat release rate for D10030 and MOME2030 were enhanced by 6.8% and 17.1%, and 7.35% and 12.28%. The 7-hole fuel injector with the nano fuel blends at an injection timing and pressure of 10° btdc and 900 bar demonstrated the overall improvement of the engine characteristics due to the better air quality for fuel mixing. Similarly, the TRCC cylinder bowl geometry illustrated advanced ignition due to an improved swirl and turbulence. Also, the engine test results demonstrated that 30 ppm of ZnO nanoparticles in Mahua biodiesel (MOME2030) and diesel (D10030) with diethyl ether resulted overall enhancement of CRDI engine characteristics.