Displaying all 2 publications

Abstract:
Sort:
  1. Khalil I, Hashem A, Nath AR, Muhd Julkapli N, Yehye WA, Basirun WJ
    Mol Cell Probes, 2021 10;59:101758.
    PMID: 34252563 DOI: 10.1016/j.mcp.2021.101758
    Authentication, detection and quantification of ingredients, and adulterants in food, meat, and meat products are of high importance these days. The conventional techniques for the detection of meat species based on lipid, protein and DNA biomarkers are facing challenges due to the poor selectivity, sensitivity and unsuitability for processed food products or complex food matrices. On the other hand, DNA based molecular techniques and nanoparticle based DNA biosensing strategies are gathering huge attention from the scientific communities, researchers and are considered as one of the best alternatives to the conventional strategies. Though nucleic acid based molecular techniques such as PCR and DNA sequencing are getting greater successes in species detection, they are still facing problems from its point-of-care applications. In this context, nanoparticle based DNA biosensors have gathered successes in some extent but not to a satisfactory stage to mark with. In recent years, many articles have been published in the area of progressive nucleic acid-based technologies, however there are very few review articles on DNA nanobiosensors in food science and technology. In this review, we present the fundamentals of DNA based molecular techniques such as PCR, DNA sequencing and their applications in food science. Moreover, the in-depth discussions of different DNA biosensing strategies or more specifically electrochemical and optical DNA nanobiosensors are presented. In addition, the significance of DNA nanobiosensors over other advanced detection technologies is discussed, focusing on the deficiencies, advantages as well as current challenges to ameliorate with the direction for future development.
  2. Matin MM, Nath AR, Saad O, Bhuiyan MM, Kadir FA, Abd Hamid SB, et al.
    Int J Mol Sci, 2016 Aug 27;17(9).
    PMID: 27618893 DOI: 10.3390/ijms17091412
    Benzyl α-l-rhamnopyranoside 4, obtained by both conventional and microwave assisted glycosidation techniques, was subjected to 2,3-O-isopropylidene protection to yield compound 5 which on benzoylation and subsequent deprotection of isopropylidene group gave the desired 4-O-benzoylrhamnopyranoside 7 in reasonable yield. Di-O-acetyl derivative of benzoate 7 was prepared to get newer rhamnopyranoside. The structure activity relationship (SAR) of the designed compounds was performed along with the prediction of activity spectra for substances (PASS) training set. Experimental studies based on antimicrobial activities verified the predictions obtained by the PASS software. Protected rhamnopyranosides 5 and 6 exhibited slight distortion from regular ¹C₄ conformation, probably due to the fusion of pyranose and isopropylidene ring. Synthesized rhamnopyranosides 4-8 were employed as test chemicals for in vitro antimicrobial evaluation against eight human pathogenic bacteria and two fungi. Antimicrobial and SAR study showed that the rhamnopyranosides were prone against fungal organisms as compared to that of the bacterial pathogens. Interestingly, PASS prediction of the rhamnopyranoside derivatives 4-8 were 0.49 < Pa < 0.60 (where Pa is probability 'to be active') as antibacterial and 0.65 < Pa < 0.73 as antifungal activities, which showed significant agreement with experimental data, suggesting rhamnopyranoside derivatives 4-8 were more active against pathogenic fungi as compared to human pathogenic bacteria thus, there is a more than 50% chance that the rhamnopyranoside derivative structures 4-8 have not been reported with antimicrobial activity, making it a possible valuable lead compound.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links