Displaying all 4 publications

Abstract:
Sort:
  1. Kua, Vee May Dianne, Ng Woei Kean, Sreenivasan, Sasidharan, Lai, Ngit Shin
    MyJurnal
    Opioids are opium-like drugs which are commonly used as analgesics to treat moderate to severe pain. Apoptosis is a type of programmed cell death to remove unnecessary or damaged cells in an organism. Recently, the ability of opioids to induce apoptosis especially in cancer cell lines hasgained the interest of many researchers. This fascinating finding hasled to more testing of different kindsof opioids against different kindsof cancer cell lines in the course to search for the potential anticancer drugs. This review provides current information about opioids and apoptosis, and more importantly the compilations of researches over the years on how opioids are related to apoptotic cells death.
  2. Ng WK, Lim TS, Lai NS
    Biotechnol Appl Biochem, 2018 Jul;65(4):547-553.
    PMID: 29280199 DOI: 10.1002/bab.1636
    A critical challenge in producing an antibody-based assay with the highest reproducibility and sensitivity is the strategy to immobilize antibodies to solid phase. To date, numerous methods of antibody immobilization were reported but each was subjected to its advantages and limitations. The current study proposes a new potential antibody binding protein, the human neonatal fragment crystallizable (Fc) receptor. This protein has shown its high affinity to the Fc of antibody either in vivo or in vitro. Human neonatal Fc receptor is a heterodimer constructed by p51 α-heavy chain and β2-microglobulin light chain; however, the binding sites toward the antibody are located in the p51 α-heavy chain. Hence, vector cloning and recombinant protein expression were carried out to express the p51 α-heavy chain of the human neonatal Fc receptor (hFcRn-α). The recombinant protein expressed, hFcRn-α, was adopted to pin rabbit IgG against hepatitis B virus surface antigen to a solid phase. A sandwich enzyme-linked immunosorbent assay was further developed to evaluate the efficiency of hFcRn-α-directed immobilization in antigen detection. The result was compared with the conventional physical adsorption method. The findings demonstrated that human neonatal Fc receptor was efficient in pinning antibodies and generating higher signals compared with the physical adsorption of antibody.
  3. Ng WK, Lim TS, Lai NS
    Protein Expr Purif, 2016 11;127:73-80.
    PMID: 27412717 DOI: 10.1016/j.pep.2016.07.004
    Neonatal Fc-receptor (FcRn) with its affinity to immunoglobulin G (IgG) has been the subject of many pharmacokinetic studies in the past century. This protein is well known for its unique feature in maintaining the circulating IgG from degradation in blood plasma. FcRn is formed by non-covalent association between the α-chain with the β-2-microglobulin (β2m). Many studies have been conducted to produce FcRn in the laboratory, mainly using mammalian tissue culture as host for recombinant protein expression. In this study, we demonstrate a novel strategy to express the α-chain of FcRn using Escherichia coli as the expression host. The expression vector that carries the cDNA of the α-chain was transformed into expression host, Rosetta-gami 2 strain for inducible expression. The bacterial culture was grown in a modified growth medium which constitutes of terrific broth, sodium chloride (NaCl), glucose and betaine. A brief heat shock at 45 °C was carried out after induction, before the temperature for expression was reduced to 22 °C and grown for 16 h. The soluble form of the α-chain of FcRn expressed was tested in the ELISA and dot blot immunoassay to confirm its native functionality. The results implied that the α-chain of FcRn expressed using this method is functional and retains its pH-dependent affinity to IgG. Our study significantly suggests that the activity of human FcRn remain active and functional in the absence of β2m.
  4. Pung HS, Tye GJ, Leow CH, Ng WK, Lai NS
    Mol Biol Rep, 2023 May;50(5):4653-4664.
    PMID: 37014570 DOI: 10.1007/s11033-023-08380-x
    Cancer is one of the leading causes of mortality worldwide; nearly 10 million people died from it in 2020. The high mortality rate results from the lack of effective screening approaches where early detection cannot be achieved, reducing the chance of early intervention to prevent cancer development. Non-invasive and deep-tissue imaging is useful in cancer diagnosis, contributing to a visual presentation of anatomy and physiology in a rapid and safe manner. Its sensitivity and specificity can be enhanced with the application of targeting ligands with the conjugation of imaging probes. Phage display is a powerful technology to identify antibody- or peptide-based ligands with effective binding specificity against their target receptor. Tumour-targeting peptides exhibit promising results in molecular imaging, but the application is limited to animals only. Modern nanotechnology facilitates the combination of peptides with various nanoparticles due to their superior characteristics, rendering novel strategies in designing more potent imaging probes for cancer diagnosis and targeting therapy. In the end, a myriad of peptide candidates that aimed for different cancers diagnosis and imaging in various forms of research were reviewed.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links