Topological defect nucleation and boundary branching in crystal growth on a curved surface are two typical elastic instabilities driven by curvature induced stress, and have usually been discussed separately in the past. In this work they are simultaneously considered during crystal growth on a sphere. Phase diagrams with respect to sphere radius, size, edge energy and stiffness of the crystal for the equilibrium crystal morphologies are achieved by theoretical analysis and validated by Brownian dynamics simulations. The simulation results further demonstrate the detail of morphological evolution governed by these two different stress relaxation modes. Topological defect nucleation and boundary branching not only compete with each other but also coexist in a range of combinations of factors. Clarification of the interaction mechanism provides a better understanding of various curved crystal morphologies for their potential applications.
Microplastic (MP) pollution has emerged as a pressing environmental concern due to its ubiquity and longevity. Biodegradation of MPs has garnered significant attention in combatting global MP contamination. This study focused on MPs within sediments near the sewage outlet of Shenzhen Bay. The objective was to elucidate the microbial communities in sediments with varying MPs, particularly those with high MP loads, and to identify microorganisms associated with MP degradation. The results revealed varying MP abundance, ranging from 211 to 4140 items kg-1 dry weight (d. w.), with the highest concentration observed near the outfall. Metagenomic analysis confirmed the enrichment of Psychrobacter species in sediments with high MP content. Psychrobacter accounted for ∼16.71% of the total bacterial community and 41.71% of hydrocarbon degrading bacteria at the S3 site, exhibiting a higher abundance than at other sampling sites. Psychrobacter contributed significantly to bacterial function at S3, as evidenced by the Kyoto Encyclopedia of Genes and Genomes pathway and enzyme analysis. Notably, 28 enzymes involved in MP biodegradation were identified, predominantly comprising oxidoreductases, hydrolases, transferases, ligases, lyases, and isomerases. We propose a putative mechanism for MP biodegradation, involving the breakdown of long-chain plastic polymers and subsequent oxidation of short-chain oligomers, ultimately leading to thorough mineralization.
A total of 9599 isolates of Gram-negative bacteria (GNB) causing urinary tract infections (UTIs) were collected from 60 centres in 13 countries in the Asia-Pacific region from 2010-2013. These isolates comprised Enterobacteriaceae species (mainly Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Klebsiella oxytoca, Enterobacter cloacae and Morganella morganii) and non-fermentative GNB species (predominantly Pseudomonas aeruginosa and Acinetobacter baumannii). In vitro susceptibilities were determined by the agar dilution method and susceptibility profiles were determined using the minimum inhibitory concentration (MIC) interpretive breakpoints recommended by the Clinical and Laboratory Standards Institute in 2015. Production of extended-spectrum β-lactamases (ESBLs) amongst E. coli, K. pneumoniae, P. mirabilis and K. oxytoca isolates was determined by the double-disk synergy test. China, Vietnam, India, Thailand and the Philippines had the highest rates of GNB species producing ESBLs and the highest rates of cephalosporin resistance. ESBL production and hospital-acquired infection (isolates obtained ≥48h after admission) significantly compromised the susceptibility of isolates of E. coli and K. pneumoniae to ciprofloxacin, levofloxacin and most β-lactams, with the exception of imipenem and ertapenem. However, >87% of ESBL-producing E. coli strains were susceptible to amikacin and piperacillin/tazobactam, indicating that these antibiotics might be appropriate alternatives for treating UTIs due to ESBL-producing E. coli. Fluoroquinolones were shown to be inappropriate as empirical therapy for UTIs. Antibiotic resistance is a serious problem in the Asia-Pacific region. Therefore, continuous monitoring of evolutionary trends in the susceptibility profiles of GNB causing UTIs in Asia is crucial.
Journal based metrics is known not to be ideal for the measurement of the quality of individual researcher's scientific output. In the current report 16 contributors from Hong Kong SAR, India, Korea, Taiwan, Russia, Germany, Japan, Turkey, Belgium, France, Italy, UK, The Netherlands, Malaysia, and USA are invited. The following six questions were asked: (I) is Web of Sciences journal impact factor (IF) and Institute for Scientific Information (ISI) citation the main academic output performance evaluation tool in your institution? and your country? (II) How does Google citation count in your institution? and your country? (III) If paper is published in a non-SCI journal but it is included in PubMed and searchable by Google scholar, how it is valued when compared with a paper published in a journal with an IF? (IV) Do you value to publish a piece of your work in a non-SCI journal as much as a paper published in a journal with an IF? (V) What is your personal view on the metric measurement of scientific output? (VI) Overall, do you think Web of Sciences journal IF is beneficial, or actually it is doing more harm? The results show that IF and ISI citation is heavily affecting the academic life in most of the institutions. Google citation and evaluation, while is being used and convenient and speedy, has not gain wide 'official' recognition as a tool for scientific output evaluation.
This study was conducted to investigate the epidemiology and antimicrobial susceptibility patterns of Gram-negative bacilli (GNB) isolated from intra-abdominal infections (IAIs) in the Asia-Pacific region (APR) from 2010-2013. A total of 17 350 isolates were collected from 54 centres in 13 countries in the APR. The three most commonly isolated GNB were Escherichia coli (46.1%), Klebsiella pneumoniae (19.3%) and Pseudomonas aeruginosa (9.8%). Overall, the rates of extended-spectrum β-lactamase (ESBL)-producing E. coli and K. pneumoniae were 38.2% and 24.3%, respectively, and they were highest in China (66.6% and 38.7%, respectively), Thailand (49.8% and 36.5%, respectively) and Vietnam (47.9% and 30.4%, respectively). During 2010-2013, the rates of ESBL-producing E. coli and K. pneumoniae isolates causing community-associated (CA) IAIs (collected <48 h after admission) were 26.0% and 13.5%, respectively, and those causing hospital-associated (HA) IAIs were 48.0% and 30.6%, respectively. Amikacin, ertapenem and imipenem were the most effective agents against ESBL-producing isolates. Piperacillin/tazobactam displayed good in vitro activity (91.4%) against CA ESBL-producing E. coli. For other commonly isolated Enterobacteriaceae, fluoroquinolones, cefepime and carbapenems exhibited better in vitro activities than third-generation cephalosporins. Amikacin possessed high in vitro activity against all GNB isolates (>80%) causing IAIs, except for Acinetobacter calcoaceticus-baumannii (ACB) complex (30.9% for HA-IAI isolates). All of the antimicrobial agents tested exhibited <45% in vitro activity against ACB complex. Antimicrobial resistance is a persistent threat in the APR and continuous monitoring of evolutionary trends in the susceptibility patterns of GNB causing IAIs in this region is mandatory.