Displaying all 4 publications

Abstract:
Sort:
  1. Nik Ramli NN, Omar N, Husin A, Ismail Z, Siran R
    Neurosci Lett, 2015 Feb 19;588:137-41.
    PMID: 25562631 DOI: 10.1016/j.neulet.2014.12.062
    Glutamate receptors are the integral cellular components associated with excitotoxicity mechanism induced by the ischemic cascade events. Therefore the glutamate receptors have become the major molecular targets of neuroprotective agents in stroke researches. Recent studies have demonstrated that a Group I metabotropic glutamate receptor agonist, (S)-3,5-dihydroxyphenylglycine ((S)-3,5-DHPG) preconditioning elicits neuroprotection in the hippocampal slice cultures exposed to toxic level of N-methyl-d-aspartate (NMDA). We further investigated the preconditioning effects of (S)-3,5-DHPG on acute ischemic stroke rats. One 10 or 100μM of (S)-3,5-DHPG was administered intrathecally to Sprague-Dawley adult male rats, 2h prior to induction of acute ischemic stroke by middle cerebral artery occlusion (MCAO). After 24h, neurological deficits were evaluated by modified stroke severity scores and grid-walking test. All rats were sacrificed and infarct volumes were determined by 2,3,5-triphenyltetrazolium chloride staining. The serum level of neuron-specific enolase (NSE) of each rat was analyzed by enzyme-linked immunosorbent assay (ELISA). One and 10μM of (S)-3,5-DHPG preconditioning in the stroke rats showed significant improvements in motor impairment (P<0.01), reduction in the infarct volume (P<0.01) and reduction in the NSE serum level (P<0.01) compared to the control stroke rats. We conclude that 1 and 10μM (S)-3,5-DHPG preconditioning induced protective effects against acute ischemic insult in vivo.
  2. Nik Ramli NN, Asokan A, Mayakrishnan D, Annamalai H
    Malays J Med Sci, 2021 Aug;28(4):14-23.
    PMID: 34512127 DOI: 10.21315/mjms2021.28.4.3
    Ranked as the second leading cause of death and the primary factor to adult disability worldwide, stroke has become a global epidemic problem and burden. As a developing country, Malaysia still faces challenges in providing ideal rehabilitation services to individuals with physical disabilities including stroke survivors. Conventional post-stroke care is often delivered in a team-based approach and involves several disciplines, such as physical therapy, occupational therapy, speech and language therapy, depending on the nature and severity of the deficits. Robots are potential tools for stroke rehabilitation as they can enhance existing conventional therapy by delivering a precise and consistent therapy of highly repetitive movements. In addition, robot-assisted physiotherapy could facilitate the effectiveness of unsupervised rehabilitation and thus, may reduce the cost and duration of therapist-assisted rehabilitation. Research on robot-assisted physiotherapy for stroke in Malaysia is slowly coming into the limelight in the past two decades. This review explores the effectiveness of robot-assisted physiotherapy particularly in improving motor functions of stroke survivors in Malaysia.
  3. Ahamad Tarmizi AA, Nik Ramli NN, Adam SH, Abdul Mutalib M, Mokhtar MH, Tang SGH
    Molecules, 2023 Jul 10;28(14).
    PMID: 37513196 DOI: 10.3390/molecules28145322
    The advancement in nanotechnology is the trigger for exploring the synthesis of selenium nanoparticles and their use in biomedicine. Therefore, this study aims to synthesize selenium nanoparticles using M. oleifera as a reducing agent and evaluate their antioxidant and antidiabetic potential. Our result demonstrated a change in the color of the mixture from yellow to red, and UV-Vis spectrometry of the suspension solution confirmed the formation of MO-SeNPs with a single absorbance peak in the range of 240-560 nm wavelength. FTIR analysis revealed several bioactive compounds, such as phenols and amines, that could possibly be responsible for the reduction and stabilization of the MO-SeNPs. FESEM + EDX analysis revealed that the amorphous MO-SeNPs are of high purity, have a spherical shape, and have a size of 20-250 nm in diameter, as determined by HRTEM. MO-SeNPs also exhibit the highest DPPH scavenging activity of 84% at 1000 μg/mL with an IC50 of 454.1 μg/mL and noteworthy reducing ability by reducing power assay. Furthermore, MO-SeNPs showed promising antidiabetic properties with dose-dependent inhibition of α-amylase (26.7% to 44.53%) and α-glucosidase enzyme (4.73% to 19.26%). Hence, these results demonstrated that M. oleifera plant extract possesses the potential to reduce selenium ions to SeNPs under optimized conditions with notable antioxidant and antidiabetic activities.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links