Displaying all 2 publications

Abstract:
Sort:
  1. Liew SH, Choo YH, Low YF, Nor Rashid F'
    Brain Inform, 2023 Aug 05;10(1):21.
    PMID: 37542531 DOI: 10.1186/s40708-023-00200-z
    This paper aims to design distraction descriptor, elicited through the object variation, to refine the granular knowledge incrementally, using the proposed probability-based incremental update strategy in Incremental Fuzzy-Rough Nearest Neighbour (IncFRNN) technique. Most of the brainprint authentication models were tested in well-controlled environments to minimize the influence of ambient disturbance on the EEG signals. These settings significantly contradict the real-world situations. Thus, making use of the distraction is wiser than eliminating it. The proposed probability-based incremental update strategy is benchmarked with the ground truth (actual class) incremental update strategy. Besides, the proposed technique is also benchmarked with First-In-First-Out (FIFO) incremental update strategy in K-Nearest Neighbour (KNN). The experimental results have shown equivalence discriminatory performance in both high distraction and quiet conditions. This has proven that the proposed distraction descriptor is able to utilize the unique EEG response towards ambient distraction to complement person authentication modelling in uncontrolled environment. The proposed probability-based IncFRNN technique has significantly outperformed the KNN technique for both with and without defining the window size threshold. Nevertheless, its performance is slightly worse than the actual class incremental update strategy since the ground truth represents the gold standard. In overall, this study demonstrated a more practical brainprint authentication model with the proposed distraction descriptor and the probability-based incremental update strategy. However, the EEG distraction descriptor may vary due to intersession variability. Future research may focus on the intersession variability to enhance the robustness of the brainprint authentication model.
  2. Wang Y, Abd Rahman AH, Nor Rashid F', Razali MKM
    Sensors (Basel), 2024 Dec 09;24(23).
    PMID: 39686392 DOI: 10.3390/s24237855
    Object detection is an essential computer vision task that identifies and locates objects within images or videos and is crucial for applications such as autonomous driving, robotics, and augmented reality. Light Detection and Ranging (LiDAR) and camera sensors are widely used for reliable object detection. These sensors produce heterogeneous data due to differences in data format, spatial resolution, and environmental responsiveness. Existing review articles on object detection predominantly focus on the statistical analysis of fusion algorithms, often overlooking the complexities of aligning data from these distinct modalities, especially dynamic environment data alignment. This paper addresses the challenges of heterogeneous LiDAR-camera alignment in dynamic environments by surveying over 20 alignment methods for three-dimensional (3D) object detection, focusing on research published between 2019 and 2024. This study introduces the core concepts of multimodal 3D object detection, emphasizing the importance of integrating data from different sensor modalities for accurate object recognition in dynamic environments. The survey then delves into a detailed comparison of recent heterogeneous alignment methods, analyzing critical approaches found in the literature, and identifying their strengths and limitations. A classification of methods for aligning heterogeneous data in 3D object detection is presented. This paper also highlights the critical challenges in aligning multimodal data, including dynamic environments, sensor fusion, scalability, and real-time processing. These limitations are thoroughly discussed, and potential future research directions are proposed to address current gaps and advance the state-of-the-art. By summarizing the latest advancements and highlighting open challenges, this survey aims to stimulate further research and innovation in heterogeneous alignment methods for multimodal 3D object detection, thereby pushing the boundaries of what is currently achievable in this rapidly evolving domain.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links