Displaying all 3 publications

Abstract:
Sort:
  1. Ooh KF, Ong HC, Wong FC, Sit NW, Chai TT
    Pharmacogn Mag, 2014 Aug;10(Suppl 3):S443-55.
    PMID: 25298659 DOI: 10.4103/0973-1296.139767
    The phytochemistry and bioactivity of wetland macrophytes are underexplored. Plants are known as the natural sources of phytochemical beneficial to health.
  2. Yong AL, Ooh KF, Ong HC, Chai TT, Wong FC
    Food Chem, 2015 Nov 1;186:32-6.
    PMID: 25976788 DOI: 10.1016/j.foodchem.2014.11.103
    In this paper, we investigated the antibacterial mechanism and potential therapeutic targets of three antibacterial medicinal plants. Upon treatment with the plant extracts, bacterial proteins were extracted and resolved using denaturing gel electrophoresis. Differentially-expressed bacterial proteins were excised from the gels and subjected to sequence analysis by MALDI TOF-TOF mass spectrometry. From our study, seven differentially expressed bacterial proteins (triacylglycerol lipase, N-acetylmuramoyl-L-alanine amidase, flagellin, outer membrane protein A, stringent starvation protein A, 30S ribosomal protein s1 and 60 kDa chaperonin) were identified. Additionally, scanning electron microscope study indicated morphological damages induced on bacterial cell surfaces. To the best of our knowledge, this represents the first time these bacterial proteins are being reported, following treatments with the antibacterial plant extracts. Further studies in this direction could lead to the detailed understanding of their inhibition mechanism and discovery of target-specific antibacterial agents.
  3. Chai TT, Ooh KF, Ooi PW, Chue PS, Wong FC
    Bot Stud, 2013 Dec;54(1):8.
    PMID: 28510853 DOI: 10.1186/1999-3110-54-8
    BACKGROUND: Water hyacinth is an invasive aquatic weed in many regions of the world. In this study, the bioherbicidal potential of allelopathic plant Leucaena leucocephala against water hyacinth was investigated using a leaf disc assay.

    RESULTS: L. leucocephala leachate enhanced electrolyte leakage from water hyacinth leaf discs in a concentration-dependent manner. Control experiments eliminated the possibilities that increased membrane permeability in the leachate-treated leaf discs was due to pH or osmotic effects of the leachate. Thus, the loss of membrane stability in the leachate-treated leaf discs was likely due to phytotoxins detected in the leachate, namely mimosine and phenolic constituents. Decline in tissue respiration was detected in leachate-treated water hyacinth leaf discs. This suggests that the L. leucocephala leachate may contain compounds which acted as respiratory inhibitors. Enhanced reactive oxygen species production coincided with inhibition of catalase and ascorbate peroxidase activities in the leachate-treated water hyacinth leaf tissues. The injurious effects of L. leucocephala leachate on water hyacinth leaf discs probably involved direct inhibition of antioxidant enzymes in addition to direct involvement of some allelochemicals in reactive oxygen species formation.

    CONCLUSION: In summary, the toxic effects of L. leucocephala leachate on water hyacinth leaf discs likely lay in its ability to effectively compromise the membrane integrity, tissue respiration and antioxidant defence of the latter.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links