The effects of different drying methods, including sun-, oven-, and freeze-drying on the changes in the antioxidant and anti-inflammatory activities of ginger (Zingiber officinale var. Rubra) rhizome were studied. Sun-, oven-, and freeze-dried ginger showed a significant (p < 0.05) increase in phenolic content by 1.79, 1.53, and 1.91-fold; flavonoid content increased by 6.06, 5.27, and 4.90-fold; FRAP increased by 3.95, 3.51, and 3.15-fold; ABTS•+ scavenging activity increased by 2.07, 1.72, and 1.61-fold; and DPPH• inhibition increased by 78%, 58%, and 56%, respectively. Dried ginger also exhibited better inhibitory effects on the lipopolysaccharides-induced nitric oxide production in murine macrophage RAW 264.7. The drying process demonstrated a positive effect on the bioactivities of ginger. The sun-dried ginger exhibited the most potent antioxidant properties with the best enhanced anti-inflammatory activity followed by the oven-dried ginger and lastly, the freeze-dried ginger.
Fucoxanthin (Fx) is an active compound commonly found in the many types of seaweed with numerous biological activities. The main goal of this investigation is to explore the effect of Fx against the cell proliferation, apoptotic induction and oxidative stress in the oral squamous (KB) cell line. Cytotoxicity of Fx was determined by MTT assay. The intracellular ROS production, mitochondrial membrane potential (MMP) and apoptosis induction in KB cells were examined through DCFH-DA, Rhodamine-123 and DAPI, and dual staining techniques. Effect of Fx on the antioxidant enzymes and lipid peroxidation in the KB cells was studied through the standard procedures. Fx treated KB cells showed morphological changes and reduced cell survival, which is exhibited by the cytotoxic activity of 50 µM/ml (IC50) Fx against the KB cells. The Fx treatment considerably induced the apoptotosis cells (EB/AO) and decreased the MMP (Rh-123) in KB cells. Further, it was pointed out that there was an increased lipid peroxidation (LPO) with decreased antioxidants (CAT, SOD and GSH). These results concluded that Fx has the cytotoxic effect against KB cells and has the potential to induce the apoptosis via increased oxidative stress. Hence, the Fx can be a promising agent for the treatment of oral cancer and it may lead to the development of cancer therapeutics.
The immature lymphoid cells with chromosomal structural and numerical abnormalities cause the acute lymphoblastic leukemia (ALL). This hematologic disorder constitutes about 25% of cancer prognosis among children and adolescents. D-Carvone, a monocyclic monoterpene obtained from the essential oils extracted from plants is reported to possess the various biological activities. The present study was aimed to investigate the anticancer potential of D-Carvone against the human leukemic Molt-4 cells. The cytotoxicity of DCarvone was analyzed by MTT assay. The level of lipid peroxidation and antioxidants were determined. The intracellular ROS, MMP and apoptosis were demonstrated by fluorescent staining techniques. The MTT assay revealed that the D-Carvone treatment suppressed the viability of Molt-4 cells and the IC50 was determined at 20 µM/ml. The D-Carvone treatment was increased the oxidative stress and reduced the level of antioxidants in the Molt-4 cell lines. The increased intracellular ROS, apoptotic cell death, and diminished MMP was noted in the D-Carvone treatment. In the Molt-4 cells, D-carvone induced the apoptosis in a time and dose dependent manner by the activation of caspases-8, -9 and -3. Thus, data provide insights for the clinical application of D-Carvone in the treatment of blood cancer Molt-4 cells. Our study suggests the therapeutic potential D-Carvone for the treatment of leukemia in future.
In this study, ellagic acid (ELA), a skin anticancer drug, is capped on the surface(s) of functionalised graphene oxide (GO) nano-sheets through electrostatic and π-π staking interactions. The prepared ELA-GO nanocomposite have been thoroughly characterised by using eight techniques: Fourier-transform infrared spectroscopy (FTIR), zeta potential, X-ray diffraction (XRD), thermogravimetric analysis (TGA), Raman spectroscopy, atomic force microscopy (AFM) topographic imaging, transmission electron microscopy (TEM), and surface morphology via scanning electron microscopy (SEM). Furthermore, ELA drug loading and release behaviours from ELA-GO nanocomposite were studied. The ELA-GO nanocomposite has a uniform size distribution averaging 88 nm and high drug loading capacity of 30 wt.%. The in vitro drug release behaviour of ELA from the nanocomposite was investigated by UV-Vis spectrometry at a wavelength of λmax 257 nm. The data confirmed prolonged ELA release over 5000 min at physiological pH (7.4). Finally, the IC50 of this ELA-GO nanocomposite was found to be 6.16 µg/ml against B16 cell line; ELA and GO did not show any cytotoxic effects up to 50 µg/ml on the same cell lines.