Displaying publications 1 - 20 of 39 in total

Abstract:
Sort:
  1. Jiamsakul A, Kerr SJ, Ng OT, Lee MP, Chaiwarith R, Yunihastuti E, et al.
    Trop Med Int Health, 2016 May;21(5):662-74.
    PMID: 26950901 DOI: 10.1111/tmi.12690
    OBJECTIVES: Treatment interruptions (TIs) of combination antiretroviral therapy (cART) are known to lead to unfavourable treatment outcomes but do still occur in resource-limited settings. We investigated the effects of TI associated with adverse events (AEs) and non-AE-related reasons, including their durations, on treatment failure after cART resumption in HIV-infected individuals in Asia.

    METHODS: Patients initiating cART between 2006 and 2013 were included. TI was defined as stopping cART for >1 day. Treatment failure was defined as confirmed virological, immunological or clinical failure. Time to treatment failure during cART was analysed using Cox regression, not including periods off treatment. Covariables with P < 0.10 in univariable analyses were included in multivariable analyses, where P < 0.05 was considered statistically significant.

    RESULTS: Of 4549 patients from 13 countries in Asia, 3176 (69.8%) were male and the median age was 34 years. A total of 111 (2.4%) had TIs due to AEs and 135 (3.0%) had TIs for other reasons. Median interruption times were 22 days for AE and 148 days for non-AE TIs. In multivariable analyses, interruptions >30 days were associated with failure (31-180 days HR = 2.66, 95%CI (1.70-4.16); 181-365 days HR = 6.22, 95%CI (3.26-11.86); and >365 days HR = 9.10, 95% CI (4.27-19.38), all P < 0.001, compared to 0-14 days). Reasons for previous TI were not statistically significant (P = 0.158).

    CONCLUSIONS: Duration of interruptions of more than 30 days was the key factor associated with large increases in subsequent risk of treatment failure. If TI is unavoidable, its duration should be minimised to reduce the risk of failure after treatment resumption.

  2. Cai Z, Petersen B, Sahana G, Madsen LB, Larsen K, Thomsen B, et al.
    Sci Rep, 2017 Nov 06;7(1):14564.
    PMID: 29109430 DOI: 10.1038/s41598-017-15169-z
    The American mink (Neovison vison) is a semiaquatic species of mustelid native to North America. It's an important animal for the fur industry. Many efforts have been made to locate genes influencing fur quality and color, but this search has been impeded by the lack of a reference genome. Here we present the first draft genome of mink. In our study, two mink individuals were sequenced by Illumina sequencing with 797 Gb sequence generated. Assembly yielded 7,175 scaffolds with an N50 of 6.3 Mb and length of 2.4 Gb including gaps. Repeat sequences constitute around 31% of the genome, which is lower than for dog and cat genomes. The alignments of mink, ferret and dog genomes help to illustrate the chromosomes rearrangement. Gene annotation identified 21,053 protein-coding sequences present in mink genome. The reference genome's structure is consistent with the microsatellite-based genetic map. Mapping of well-studied genes known to be involved in coat quality and coat color, and previously located fur quality QTL provide new knowledge about putative candidate genes for fur traits. The draft genome shows great potential to facilitate genomic research towards improved breeding for high fur quality animals and strengthen our understanding on evolution of Carnivora.
  3. Jorquera R, González C, Clausen P, Petersen B, Holmes DS
    Database (Oxford), 2018 01 01;2018:1-6.
    PMID: 30239665 DOI: 10.1093/database/bay089
    Efficient extraction of knowledge from biological data requires the development of structured vocabularies to unambiguously define biological terms. This paper proposes descriptions and definitions to disambiguate the term 'single-exon gene'. Eukaryotic Single-Exon Genes (SEGs) have been defined as genes that do not have introns in their protein coding sequences. They have been studied not only to determine their origin and evolution but also because their expression has been linked to several types of human cancer and neurological/developmental disorders and many exhibit tissue-specific transcription. Unfortunately, the term 'SEGs' is rife with ambiguity, leading to biological misinterpretations. In the classic definition, no distinction is made between SEGs that harbor introns in their untranslated regions (UTRs) versus those without. This distinction is important to make because the presence of introns in UTRs affects transcriptional regulation and post-transcriptional processing of the mRNA. In addition, recent whole-transcriptome shotgun sequencing has led to the discovery of many examples of single-exon mRNAs that arise from alternative splicing of multi-exon genes, these single-exon isoforms are being confused with SEGs despite their clearly different origin. The increasing expansion of RNA-seq datasets makes it imperative to distinguish the different SEG types before annotation errors become indelibly propagated in biological databases. This paper develops a structured vocabulary for their disambiguation, allowing a major reassessment of their evolutionary trajectories, regulation, RNA processing and transport, and provides the opportunity to improve the detection of gene associations with disorders including cancers, neurological and developmental diseases.
  4. Renaud G, Petersen B, Seguin-Orlando A, Bertelsen MF, Waller A, Newton R, et al.
    Sci Adv, 2018 04;4(4):eaaq0392.
    PMID: 29740610 DOI: 10.1126/sciadv.aaq0392
    Donkeys and horses share a common ancestor dating back to about 4 million years ago. Although a high-quality genome assembly at the chromosomal level is available for the horse, current assemblies available for the donkey are limited to moderately sized scaffolds. The absence of a better-quality assembly for the donkey has hampered studies involving the characterization of patterns of genetic variation at the genome-wide scale. These range from the application of genomic tools to selective breeding and conservation to the more fundamental characterization of the genomic loci underlying speciation and domestication. We present a new high-quality donkey genome assembly obtained using the Chicago HiRise assembly technology, providing scaffolds of subchromosomal size. We make use of this new assembly to obtain more accurate measures of heterozygosity for equine species other than the horse, both genome-wide and locally, and to detect runs of homozygosity potentially pertaining to positive selection in domestic donkeys. Finally, this new assembly allowed us to identify fine-scale chromosomal rearrangements between the horse and the donkey that likely played an active role in their divergence and, ultimately, speciation.
  5. Tessema SK, Utama D, Chesnokov O, Hodder AN, Lin CS, Harrison GLA, et al.
    Infect Immun, 2018 08;86(8).
    PMID: 29784862 DOI: 10.1128/IAI.00485-17
    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) mediates parasite sequestration to the cerebral microvasculature via binding of DBLβ domains to intercellular adhesion molecule 1 (ICAM1) and is associated with severe cerebral malaria. In a cohort of 187 young children from Papua New Guinea (PNG), we examined baseline levels of antibody to the ICAM1-binding PfEMP1 domain, DBLβ3PF11_0521, in comparison to four control antigens, including NTS-DBLα and CIDR1 domains from another group A variant and a group B/C variant. Antibody levels for the group A antigens were strongly associated with age and exposure. Antibody responses to DBLβ3PF11_0521 were associated with a 37% reduced risk of high-density clinical malaria in the follow-up period (adjusted incidence risk ratio [aIRR] = 0.63 [95% confidence interval {CI}, 0.45 to 0.88; P = 0.007]) and a 25% reduction in risk of low-density clinical malaria (aIRR = 0.75 [95% CI, 0.55 to 1.01; P = 0.06]), while there was no such association for other variants. Children who experienced severe malaria also had significantly lower levels of antibody to DBLβ3PF11_0521 and the other group A domains than those that experienced nonsevere malaria. Furthermore, a subset of PNG DBLβ sequences had ICAM1-binding motifs, formed a distinct phylogenetic cluster, and were similar to sequences from other areas of endemicity. PfEMP1 variants associated with these DBLβ domains were enriched for DC4 and DC13 head structures implicated in endothelial protein C receptor (EPCR) binding and severe malaria, suggesting conservation of dual binding specificities. These results provide further support for the development of specific classes of PfEMP1 as vaccine candidates and as biomarkers for protective immunity against clinical P. falciparum malaria.
  6. Machado AM, Tørresen OK, Kabeya N, Couto A, Petersen B, Felício M, et al.
    Genes (Basel), 2018 Oct 09;9(10).
    PMID: 30304855 DOI: 10.3390/genes9100485
    Clupeiformes, such as sardines and herrings, represent an important share of worldwide fisheries. Among those, the European sardine (Sardina pilchardus, Walbaum 1792) exhibits significant commercial relevance. While the last decade showed a steady and sharp decline in capture levels, recent advances in culture husbandry represent promising research avenues. Yet, the complete absence of genomic resources from sardine imposes a severe bottleneck to understand its physiological and ecological requirements. We generated 69 Gbp of paired-end reads using Illumina HiSeq X Ten and assembled a draft genome assembly with an N50 scaffold length of 25,579 bp and BUSCO completeness of 82.1% (Actinopterygii). The estimated size of the genome ranges between 655 and 850 Mb. Additionally, we generated a relatively high-level liver transcriptome. To deliver a proof of principle of the value of this dataset, we established the presence and function of enzymes (Elovl2, Elovl5, and Fads2) that have pivotal roles in the biosynthesis of long chain polyunsaturated fatty acids, essential nutrients particularly abundant in oily fish such as sardines. Our study provides the first omics dataset from a valuable economic marine teleost species, the European sardine, representing an essential resource for their effective conservation, management, and sustainable exploitation.
  7. Sinding MS, Gopalakrishan S, Vieira FG, Samaniego Castruita JA, Raundrup K, Heide Jørgensen MP, et al.
    PLoS Genet, 2018 11;14(11):e1007745.
    PMID: 30419012 DOI: 10.1371/journal.pgen.1007745
    North America is currently home to a number of grey wolf (Canis lupus) and wolf-like canid populations, including the coyote (Canis latrans) and the taxonomically controversial red, Eastern timber and Great Lakes wolves. We explored their population structure and regional gene flow using a dataset of 40 full genome sequences that represent the extant diversity of North American wolves and wolf-like canid populations. This included 15 new genomes (13 North American grey wolves, 1 red wolf and 1 Eastern timber/Great Lakes wolf), ranging from 0.4 to 15x coverage. In addition to providing full genome support for the previously proposed coyote-wolf admixture origin for the taxonomically controversial red, Eastern timber and Great Lakes wolves, the discriminatory power offered by our dataset suggests all North American grey wolves, including the Mexican form, are monophyletic, and thus share a common ancestor to the exclusion of all other wolves. Furthermore, we identify three distinct populations in the high arctic, one being a previously unidentified "Polar wolf" population endemic to Ellesmere Island and Greenland. Genetic diversity analyses reveal particularly high inbreeding and low heterozygosity in these Polar wolves, consistent with long-term isolation from the other North American wolves.
  8. Gopalakrishnan S, Sinding MS, Ramos-Madrigal J, Niemann J, Samaniego Castruita JA, Vieira FG, et al.
    Curr Biol, 2018 11 05;28(21):3441-3449.e5.
    PMID: 30344120 DOI: 10.1016/j.cub.2018.08.041
    The evolutionary history of the wolf-like canids of the genus Canis has been heavily debated, especially regarding the number of distinct species and their relationships at the population and species level [1-6]. We assembled a dataset of 48 resequenced genomes spanning all members of the genus Canis except the black-backed and side-striped jackals, encompassing the global diversity of seven extant canid lineages. This includes eight new genomes, including the first resequenced Ethiopian wolf (Canis simensis), one dhole (Cuon alpinus), two East African hunting dogs (Lycaon pictus), two Eurasian golden jackals (Canis aureus), and two Middle Eastern gray wolves (Canis lupus). The relationships between the Ethiopian wolf, African golden wolf, and golden jackal were resolved. We highlight the role of interspecific hybridization in the evolution of this charismatic group. Specifically, we find gene flow between the ancestors of the dhole and African hunting dog and admixture between the gray wolf, coyote (Canis latrans), golden jackal, and African golden wolf. Additionally, we report gene flow from gray and Ethiopian wolves to the African golden wolf, suggesting that the African golden wolf originated through hybridization between these species. Finally, we hypothesize that coyotes and gray wolves carry genetic material derived from a "ghost" basal canid lineage.
  9. Rey-Iglesia A, Gopalakrishan S, Carøe C, Alquezar-Planas DE, Ahlmann Nielsen A, Röder T, et al.
    Mol Ecol Resour, 2019 Mar;19(2):512-525.
    PMID: 30575257 DOI: 10.1111/1755-0998.12984
    In recent years, the availability of reduced representation library (RRL) methods has catalysed an expansion of genome-scale studies to characterize both model and non-model organisms. Most of these methods rely on the use of restriction enzymes to obtain DNA sequences at a genome-wide level. These approaches have been widely used to sequence thousands of markers across individuals for many organisms at a reasonable cost, revolutionizing the field of population genomics. However, there are still some limitations associated with these methods, in particular the high molecular weight DNA required as starting material, the reduced number of common loci among investigated samples, and the short length of the sequenced site-associated DNA. Here, we present MobiSeq, a RRL protocol exploiting simple laboratory techniques, that generates genomic data based on PCR targeted enrichment of transposable elements and the sequencing of the associated flanking region. We validate its performance across 103 DNA extracts derived from three mammalian species: grey wolf (Canis lupus), red deer complex (Cervus sp.) and brown rat (Rattus norvegicus). MobiSeq enables the sequencing of hundreds of thousands loci across the genome and performs SNP discovery with relatively low rates of clonality. Given the ease and flexibility of MobiSeq protocol, the method has the potential to be implemented for marker discovery and population genomics across a wide range of organisms-enabling the exploration of diverse evolutionary and conservation questions.
  10. Hendriksen RS, Munk P, Njage P, van Bunnik B, McNally L, Lukjancenko O, et al.
    Nat Commun, 2019 03 08;10(1):1124.
    PMID: 30850636 DOI: 10.1038/s41467-019-08853-3
    Antimicrobial resistance (AMR) is a serious threat to global public health, but obtaining representative data on AMR for healthy human populations is difficult. Here, we use metagenomic analysis of untreated sewage to characterize the bacterial resistome from 79 sites in 60 countries. We find systematic differences in abundance and diversity of AMR genes between Europe/North-America/Oceania and Africa/Asia/South-America. Antimicrobial use data and bacterial taxonomy only explains a minor part of the AMR variation that we observe. We find no evidence for cross-selection between antimicrobial classes, or for effect of air travel between sites. However, AMR gene abundance strongly correlates with socio-economic, health and environmental factors, which we use to predict AMR gene abundances in all countries in the world. Our findings suggest that global AMR gene diversity and abundance vary by region, and that improving sanitation and health could potentially limit the global burden of AMR. We propose metagenomic analysis of sewage as an ethically acceptable and economically feasible approach for continuous global surveillance and prediction of AMR.
  11. Westbury MV, Petersen B, Garde E, Heide-Jørgensen MP, Lorenzen ED
    iScience, 2019 Apr 08.
    PMID: 31054839 DOI: 10.1016/j.isci.2019.03.023
    The narwhal (Monodon monoceros) is a highly specialized endemic Arctic cetacean, restricted to the Arctic seas bordering the North Atlantic. Low levels of genetic diversity have been observed across several narwhal populations using mitochondrial DNA and microsatellites. Despite this, the global abundance of narwhals was recently estimated at ∼170,000 individuals. However, the species is still considered vulnerable to changing climates due to its high specialization and restricted Arctic distribution. We assembled and annotated a genome from a narwhal from West Greenland. We find relatively low diversity at the genomic scale and show that this did not arise by recent inbreeding, but rather has been stable over an extended evolutionary timescale. We also find that the current large global abundance most likely reflects a recent rapid expansion from a much smaller founding population.
  12. Jørgensen TS, Petersen B, Petersen HCB, Browne PD, Prost S, Stillman JH, et al.
    Genome Biol Evol, 2019 May 01;11(5):1440-1450.
    PMID: 30918947 DOI: 10.1093/gbe/evz067
    Members of the crustacean subclass Copepoda are likely the most abundant metazoans worldwide. Pelagic marine species are critical in converting planktonic microalgae to animal biomass, supporting oceanic food webs. Despite their abundance and ecological importance, only six copepod genomes are publicly available, owing to a number of factors including large genome size, repetitiveness, GC-content, and small animal size. Here, we report the seventh representative copepod genome and the first genome and the first transcriptome from the calanoid copepod species Acartia tonsa Dana, which is among the most numerous mesozooplankton in boreal coastal and estuarine waters. The ecology, physiology, and behavior of A. tonsa have been studied extensively. The genetic resources contributed in this work will allow researchers to link experimental results to molecular mechanisms. From PCR-free whole genome sequence and mRNA Illumina data, we assemble the largest copepod genome to date. We estimate that A. tonsa has a total genome size of 2.5 Gb including repetitive elements we could not resolve. The nonrepetitive fraction of the genome assembly is estimated to be 566 Mb. Our DNA sequencing-based analyses suggest there is a 14-fold difference in genome size between the six members of Copepoda with available genomic information. This finding complements nucleus staining genome size estimations, where 100-fold difference has been reported within 70 species. We briefly analyze the repeat structure in the existing copepod whole genome sequence data sets. The information presented here confirms the evolution of genome size in Copepoda and expands the scope for evolutionary inferences in Copepoda by providing several levels of genetic information from a key planktonic crustacean species.
  13. Prost S, Armstrong EE, Nylander J, Thomas GWC, Suh A, Petersen B, et al.
    Gigascience, 2019 May 01;8(5).
    PMID: 30689847 DOI: 10.1093/gigascience/giz003
    The diverse array of phenotypes and courtship displays exhibited by birds-of-paradise have long fascinated scientists and nonscientists alike. Remarkably, almost nothing is known about the genomics of this iconic radiation. There are 41 species in 16 genera currently recognized within the birds-of-paradise family (Paradisaeidae), most of which are endemic to the island of New Guinea. In this study, we sequenced genomes of representatives from all five major clades within this family to characterize genomic changes that may have played a role in the evolution of the group's extensive phenotypic diversity. We found genes important for coloration, morphology, and feather and eye development to be under positive selection. In birds-of-paradise with complex lekking systems and strong sexual dimorphism, the core birds-of-paradise, we found Gene Ontology categories for "startle response" and "olfactory receptor activity" to be enriched among the gene families expanding significantly faster compared to the other birds in our study. Furthermore, we found novel families of retrovirus-like retrotransposons active in all three de novo genomes since the early diversification of the birds-of-paradise group, which might have played a role in the evolution of this fascinating group of birds.
  14. Jørgensen TS, Nielsen BLH, Petersen B, Browne PD, Hansen BW, Hansen LH
    G3 (Bethesda), 2019 05 07;9(5):1295-1302.
    PMID: 30923136 DOI: 10.1534/g3.119.400085
    Copepoda is one of the most ecologically important animal groups on Earth, yet very few genetic resources are available for this Subclass. Here, we present the first whole genome sequence (WGS, acc. UYDY01) and the first mRNA transcriptome assembly (TSA, Acc. GHAJ01) for the tropical cyclopoid copepod species Apocyclops royi Until now, only the 18S small subunit of ribosomal RNA gene and the COI gene has been available from A. royi, and WGS resources was only available from one other cyclopoid copepod species. Overall, the provided resources are the 8th copepod species to have WGS resources available and the 19th copepod species with TSA information available. We analyze the length and GC content of the provided WGS scaffolds as well as the coverage and gene content of both the WGS and the TSA assembly. Finally, we place the resources within the copepod order Cyclopoida as a member of the Apocyclops genus. We estimate the total genome size of A. royi to 450 Mb, with 181 Mb assembled nonrepetitive sequence, 76 Mb assembled repeats and 193 Mb unassembled sequence. The TSA assembly consists of 29,737 genes and an additional 45,756 isoforms. In the WGS and TSA assemblies, >80% and >95% of core genes can be found, though many in fragmented versions. The provided resources will allow researchers to conduct physiological experiments on A. royi, and also increase the possibilities for copepod gene set analysis, as it adds substantially to the copepod datasets available.
  15. Klausen MS, Jespersen MC, Nielsen H, Jensen KK, Jurtz VI, Sønderby CK, et al.
    Proteins, 2019 06;87(6):520-527.
    PMID: 30785653 DOI: 10.1002/prot.25674
    The ability to predict local structural features of a protein from the primary sequence is of paramount importance for unraveling its function in absence of experimental structural information. Two main factors affect the utility of potential prediction tools: their accuracy must enable extraction of reliable structural information on the proteins of interest, and their runtime must be low to keep pace with sequencing data being generated at a constantly increasing speed. Here, we present NetSurfP-2.0, a novel tool that can predict the most important local structural features with unprecedented accuracy and runtime. NetSurfP-2.0 is sequence-based and uses an architecture composed of convolutional and long short-term memory neural networks trained on solved protein structures. Using a single integrated model, NetSurfP-2.0 predicts solvent accessibility, secondary structure, structural disorder, and backbone dihedral angles for each residue of the input sequences. We assessed the accuracy of NetSurfP-2.0 on several independent test datasets and found it to consistently produce state-of-the-art predictions for each of its output features. We observe a correlation of 80% between predictions and experimental data for solvent accessibility, and a precision of 85% on secondary structure 3-class predictions. In addition to improved accuracy, the processing time has been optimized to allow predicting more than 1000 proteins in less than 2 hours, and complete proteomes in less than 1 day.
  16. Ramos-Madrigal J, Runge AKW, Bouby L, Lacombe T, Samaniego Castruita JA, Adam-Blondon AF, et al.
    Nat Plants, 2019 Jun;5(6):595-603.
    PMID: 31182840 DOI: 10.1038/s41477-019-0437-5
    The Eurasian grapevine (Vitis vinifera) has long been important for wine production as well as being a food source. Despite being clonally propagated, modern cultivars exhibit great morphological and genetic diversity, with thousands of varieties described in historic and contemporaneous records. Through historical accounts, some varieties can be traced to the Middle Ages, but the genetic relationships between ancient and modern vines remain unknown. We present target-enriched genome-wide sequencing data from 28 archaeological grape seeds dating to the Iron Age, Roman era and medieval period. When compared with domesticated and wild accessions, we found that the archaeological samples were closely related to western European cultivars used for winemaking today. We identified seeds with identical genetic signatures present at different Roman sites, as well as seeds sharing parent-offspring relationships with varieties grown today. Furthermore, we discovered that one seed dated to ~1100 CE was a genetic match to 'Savagnin Blanc', providing evidence for 900 years of uninterrupted vegetative propagation.
  17. Westbury MV, Petersen B, Lorenzen ED
    PLoS One, 2019;14(9):e0222004.
    PMID: 31553763 DOI: 10.1371/journal.pone.0222004
    Fin whales (Balaenoptera physalus) and blue whales (B. musculus) are the two largest species on Earth and are widely distributed across the world's oceans. Hybrids between these species appear to be relatively widespread and have been reported in both the North Atlantic and North Pacific; they are also relatively common, and have been proposed to occur once in every thousand fin whales. However, despite known hybridization, fin and blue whales are not sibling species. Rather, the closest living relative of fin whales are humpback whales (Megaptera novaeangliae). To improve the quality of fin whale data available for analysis, we assembled and annotated a fin whale nuclear genome using in-silico mate pair libraries and previously published short-read data. Using this assembly and genomic data from a humpback, blue, and bowhead whale, we investigated whether signatures of introgression between the fin and blue whale could be found. We find no signatures of contemporary admixture in the fin and blue whale genomes, although our analyses support ancestral gene flow between the species until 2.4-1.3 Ma. We propose the following explanations for our findings; i) fin/blue whale hybridization does not occur in the populations our samples originate from, ii) contemporary hybrids are a recent phenomenon and the genetic consequences have yet to become widespread across populations, or iii) fin/blue whale hybrids are under large negative selection, preventing them from backcrossing and contributing to the parental gene pools.
  18. da Fonseca RR, Couto A, Machado AM, Brejova B, Albertin CB, Silva F, et al.
    Gigascience, 2020 Jan 01;9(1).
    PMID: 31942620 DOI: 10.1093/gigascience/giz152
    BACKGROUND: The giant squid (Architeuthis dux; Steenstrup, 1857) is an enigmatic giant mollusc with a circumglobal distribution in the deep ocean, except in the high Arctic and Antarctic waters. The elusiveness of the species makes it difficult to study. Thus, having a genome assembled for this deep-sea-dwelling species will allow several pending evolutionary questions to be unlocked.

    FINDINGS: We present a draft genome assembly that includes 200 Gb of Illumina reads, 4 Gb of Moleculo synthetic long reads, and 108 Gb of Chicago libraries, with a final size matching the estimated genome size of 2.7 Gb, and a scaffold N50 of 4.8 Mb. We also present an alternative assembly including 27 Gb raw reads generated using the Pacific Biosciences platform. In addition, we sequenced the proteome of the same individual and RNA from 3 different tissue types from 3 other species of squid (Onychoteuthis banksii, Dosidicus gigas, and Sthenoteuthis oualaniensis) to assist genome annotation. We annotated 33,406 protein-coding genes supported by evidence, and the genome completeness estimated by BUSCO reached 92%. Repetitive regions cover 49.17% of the genome.

    CONCLUSIONS: This annotated draft genome of A. dux provides a critical resource to investigate the unique traits of this species, including its gigantism and key adaptations to deep-sea environments.

  19. Gelabert P, Sandoval-Velasco M, Serres A, de Manuel M, Renom P, Margaryan A, et al.
    Curr Biol, 2020 01 06;30(1):108-114.e5.
    PMID: 31839456 DOI: 10.1016/j.cub.2019.10.066
    As the only endemic neotropical parrot to have recently lived in the northern hemisphere, the Carolina parakeet (Conuropsis carolinensis) was an iconic North American bird. The last surviving specimen died in the Cincinnati Zoo in 1918 [1]. The cause of its extinction remains contentious: besides excessive mortality associated to habitat destruction and active hunting, their survival could have been negatively affected by its range having become increasingly patchy [2] or by the exposure to poultry pathogens [3, 4]. In addition, the Carolina parakeet showed a predilection for cockleburs, an herbaceous plant that contains a powerful toxin, carboxyatractyloside, or CAT [5], which did not seem to affect them but made the birds notoriously toxic to most predators [3]. To explore the demographic history of this bird, we generated the complete genomic sequence of a preserved specimen held in a private collection in Espinelves (Girona, Spain), as well as of a close extant relative, Aratinga solstitialis. We identified two non-synonymous genetic changes in two highly conserved proteins known to interact with CAT that could underlie a specific dietary adaptation to this toxin. Our genomic analyses did not reveal evidence of a dramatic past demographic decline in the Carolina parakeet; also, its genome did not exhibit the long runs of homozygosity that are signals of recent inbreeding and are typically found in endangered species. As such, our results suggest its extinction was an abrupt process and thus likely solely attributable to human causes.
  20. Sinding MS, Gopalakrishnan S, Ramos-Madrigal J, de Manuel M, Pitulko VV, Kuderna L, et al.
    Science, 2020 06 26;368(6498):1495-1499.
    PMID: 32587022 DOI: 10.1126/science.aaz8599
    Although sled dogs are one of the most specialized groups of dogs, their origin and evolution has received much less attention than many other dog groups. We applied a genomic approach to investigate their spatiotemporal emergence by sequencing the genomes of 10 modern Greenland sled dogs, an ~9500-year-old Siberian dog associated with archaeological evidence for sled technology, and an ~33,000-year-old Siberian wolf. We found noteworthy genetic similarity between the ancient dog and modern sled dogs. We detected gene flow from Pleistocene Siberian wolves, but not modern American wolves, to present-day sled dogs. The results indicate that the major ancestry of modern sled dogs traces back to Siberia, where sled dog-specific haplotypes of genes that potentially relate to Arctic adaptation were established by 9500 years ago.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links