Displaying all 7 publications

Abstract:
Sort:
  1. Leemsuthep A, Zakaria Z, Tanrattanakul V, Ramarad S, Muniyadi M, Jaruga T, et al.
    Materials (Basel), 2021 Apr 28;14(9).
    PMID: 33924997 DOI: 10.3390/ma14092282
    This paper explored the effects of ammonium bicarbonate and different ratios of epoxy to polyamide on the formation of porous epoxy micro-beads through a single epoxy droplet. A single drop of a mixture, consisting of epoxy, polyamide, and ammonium bicarbonate, was dropped into heated corn oil at a temperature of 100 °C. An epoxy droplet was formed due to the immiscibility of the epoxy mixture and corn oil. The ammonium bicarbonate within this droplet underwent a decomposition reaction, while the epoxy and polyamide underwent a curing reaction, to form porous epoxy micro-beads. The result showed that the higher ammonium bicarbonate content in the porous, epoxy micro-beads increased the decomposition rate up to 11.52 × 10-3 cm3/s. In addition, a higher total volume of gas was generated when a higher ammonium bicarbonate content was decomposed. This led to the formation of porous epoxy micro-beads with a smaller particle size, lower specific gravity, and better thermal stability. At an epoxy to polyamide ratio of 10:6, many smaller micro-beads, with particle sizes ranging from 201 to 400 μm, were obtained at an ammonium bicarbonate content of 10 phr. Moreover, the porous epoxy micro-beads with open pores were shown to have a low specific gravity of about 0.93 and high thermal stability at a high ammonium bicarbonate content. Based on the findings, it was concluded that porous epoxy micro-beads were successfully produced using a single epoxy droplet in heated corn oil, where their shape and particle size depended on the content of ammonium bicarbonate and the ratio of epoxy to polyamide used.
  2. Ghazali MF, Abdullah MMAB, Abd Rahim SZ, Gondro J, Pietrusiewicz P, Garus S, et al.
    Materials (Basel), 2021 Mar 26;14(7).
    PMID: 33810517 DOI: 10.3390/ma14071628
    This paper reports on the potential use of geopolymer in the drilling process, with respect to tool wear and surface roughness. The objectives of this research are to analyze the tool life of three different economy-grade drill bit uncoated; high-speed steel (HSS), HSS coated with TiN (HSS-TiN), and HSS-cobalt (HSS-Co) in the drilling of geopolymer and to investigate the effect of spindle speed towards the tool life and surface roughness. It was found that, based on the range of parameters set in this experiment, the spindle speed is directly proportional to the tool wear and inversely proportional to surface roughness. It was also observed that HSS-Co produced the lowest value of surface roughness compared to HSS-TiN and uncoated HSS and therefore is the most favorable tool to be used for drilling the material. For HSS, HSS coated with TiN, and HSS-Co, only the drilling with the spindle speed of 100 rpm was able to drill 15 holes without surpassing the maximum tool wear of 0.10 mm. HSS-Co exhibits the greatest tool life by showing the lowest value of flank wear and produce a better surface finish to the sample by a low value of surface roughness value (Ra). This finding explains that geopolymer is possible to be drilled, and therefore, ranges of cutting tools and parameters suggested can be a guideline for researchers and manufacturers to drill geopolymer for further applications.
  3. Chong BW, Othman R, Putra Jaya R, Mohd Hasan MR, Sandu AV, Nabiałek M, et al.
    Materials (Basel), 2021 Apr 09;14(8).
    PMID: 33918757 DOI: 10.3390/ma14081866
    Concrete mix design and the determination of concrete performance are not merely engineering studies, but also mathematical and statistical endeavors. The study of concrete mechanical properties involves a myriad of factors, including, but not limited to, the amount of each constituent material and its proportion, the type and dosage of chemical additives, and the inclusion of different waste materials. The number of factors and combinations make it difficult, or outright impossible, to formulate an expression of concrete performance through sheer experimentation. Hence, design of experiment has become a part of studies, involving concrete with material addition or replacement. This paper reviewed common design of experimental methods, implemented by past studies, which looked into the analysis of concrete performance. Several analysis methods were employed to optimize data collection and data analysis, such as analysis of variance (ANOVA), regression, Taguchi method, Response Surface Methodology, and Artificial Neural Network. It can be concluded that the use of statistical analysis is helpful for concrete material research, and all the reviewed designs of experimental methods are helpful in simplifying the work and saving time, while providing accurate prediction of concrete mechanical performance.
  4. Zulkifli NNI, Abdullah MMAB, Przybył A, Pietrusiewicz P, Salleh MAAM, Aziz IH, et al.
    Materials (Basel), 2021 Apr 26;14(9).
    PMID: 33925777 DOI: 10.3390/ma14092213
    This paper clarified the microstructural element distribution and electrical conductivity changes of kaolin, fly ash, and slag geopolymer at 900 °C. The surface microstructure analysis showed the development in surface densification within the geopolymer when in contact with sintering temperature. It was found that the electrical conductivity was majorly influenced by the existence of the crystalline phase within the geopolymer sample. The highest electrical conductivity (8.3 × 10-4 Ωm-1) was delivered by slag geopolymer due to the crystalline mineral of gehlenite (3Ca2Al2SiO7). Using synchrotron radiation X-ray fluorescence, the high concentration Ca boundaries revealed the appearance of gehlenite crystallisation, which was believed to contribute to development of denser microstructure and electrical conductivity.
  5. Hamid NJA, Kadir AA, Hashar NNH, Pietrusiewicz P, Nabiałek M, Wnuk I, et al.
    Materials (Basel), 2021 May 24;14(11).
    PMID: 34074057 DOI: 10.3390/ma14112800
    Wastewater treatment activities in the chemical industry have generated abundant gypsum waste, classified as scheduled waste (SW205) under the Environmental Quality Regulations 2005. The waste needs to be disposed into a secure landfill due to the high heavy metals content which is becoming a threat to the environment. Hence, an alternative disposal method was evaluated by recycling the waste into fired clay brick. The brick samples were incorporated with different percentages of gypsum waste (0% as control, 10, 20, 30, 40 and 50%) and were fired at 1050 °C using 1 °C per minute heating rate. Shrinkage, dry density, initial rate of suction (IRS) and compressive strength tests were conducted to determine the physical and mechanical properties of the brick, while the synthetic precipitation leaching procedure (SPLP) was performed to scrutinize the leachability of heavy metals from the crushed brick samples. The results showed that the properties would decrease through the incorporation of gypsum waste and indicated the best result at 10% of waste utilization with 47.5% of shrinkage, 1.37% of dry density, 22.87% of IRS and 28.3% of compressive strength. In addition, the leachability test highlighted that the concentrations of Fe and Al was significantly reduced up to 100% from 4884 to 3.13 ppm (Fe) and from 16,134 to 0.81 ppm (Al), respectively. The heavy metals content in the bricks were oxidized during the firing process, which signified the successful remediation of heavy metals in the samples. Based on the permissible incorporation of gypsum waste into fired clay brick, this study promised a more green disposing method for gypsum waste, and insight as a potential towards achieving a sustainable end product.
  6. Roslan N, Abd Rahim SZ, Abdellah AE, Abdullah MMAB, Błoch K, Pietrusiewicz P, et al.
    Materials (Basel), 2021 Apr 05;14(7).
    PMID: 33916414 DOI: 10.3390/ma14071795
    Achieving good quality of products from plastic injection moulding processes is very challenging, since the process comprises many affecting parameters. Common defects such as warpage are hard to avoid, and the defective parts will eventually go to waste, leading to unnecessary costs to the manufacturer. The use of recycled material from postindustrial waste has been studied by a few researchers. However, the application of an optimisation method by which to optimise processing parameters to mould parts using recycled materials remains lacking. In this study, Response Surface Methodology (RSM) and Particle Swarm Optimisation (PSO) methods were conducted on thick plate parts moulded using virgin and recycled low-density polyethylene (LDPE) materials (100:0, 70:30, 60:40 and 50:50; virgin to recycle material ratios) to find the optimal input parameters for each of the material ratios. Shrinkage in the x and y directions increased in correlation with the recycled ratio, compared to virgin material. Meanwhile, the tensile strength of the thick plate part continued to decrease when the recycled ratio increased. R30 (70:30) had the optimum shrinkage in the x direction with respect to R0 (100:0) material where the shrinkage increased by 24.49% (RSM) and 33.20% (PSO). On the other hand, the shrinkage in the y direction for R30 material increased by 4.48% (RSM) and decreased by 2.67% (PSO), while the tensile strength of R30 (70:30) material decreased by 0.51% (RSM) and 2.68% (PSO) as compared to R0 (100:0) material. Validation tests indicated that the optimal setting of processing parameter suggested by PSO and RSM for R0 (100:0), R30 (70:30), R40 (60:40) and R50 (50:50) was less than 10%.
  7. Yong-Sing N, Yun-Ming L, Cheng-Yong H, Abdullah MMAB, Pakawanit P, Vizureanu P, et al.
    Materials (Basel), 2022 Jun 13;15(12).
    PMID: 35744236 DOI: 10.3390/ma15124178
    This paper elucidates the influence of borax decahydrate addition on the flexural and thermal properties of 10 mm thin fly ash/ladle furnace slag (FAS) geopolymers. The borax decahydrate (2, 4, 6, and 8 wt.%) was incorporated to produce FAB geopolymers. Heat treatment was applied with temperature ranges of 300 °C, 600 °C, 900 °C, 1000 °C and 1100 °C. Unexposed FAB geopolymers experienced a drop in strength due to a looser matrix with higher porosity. However, borax decahydrate inclusion significantly enhanced the flexural performance of thin geopolymers after heating. FAB2 and FAB8 geopolymers reported higher flexural strength of 26.5 MPa and 47.8 MPa, respectively, at 1000 °C as compared to FAS geopolymers (24.1 MPa at 1100 °C). The molten B2O3 provided an adhesive medium to assemble the aluminosilicates, improving the interparticle connectivity which led to a drastic strength increment. Moreover, the borax addition reduced the glass transition temperature, forming more refractory crystalline phases at lower temperatures. This induced a significant strength increment in FAB geopolymers with a factor of 3.6 for FAB8 at 900 °C, and 4.0 factor for FAB2 at 1000 °C, respectively. Comparatively, FAS geopolymers only achieved 3.1 factor in strength increment at 1100 °C. This proved that borax decahydrate could be utilized in the high strength development of thin geopolymers.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links