Displaying all 4 publications

Abstract:
Sort:
  1. Chuah WW, Tan JS, Hazwani Oslan SN, Bothi Raja P
    Prep Biochem Biotechnol, 2024 Apr;54(4):514-525.
    PMID: 37694843 DOI: 10.1080/10826068.2023.2252047
    Lactic acid bacteria (LAB) can produce γ-aminobutyric acid (GABA) with antioxidant properties and sedative effects when it binds to the GABA receptor in the human brain. LAB can also produce bacteriocin-like inhibitory substances (BLIS) with antimicrobial capabilities during carbohydrate fermentation. GABA and BLIS are natural compounds with potential health benefits and food preservation properties. Lactobacillus brevis C23 was co-cultured with three different LABs as inducers, which produced the highest GABA content and BLIS activity. They were cultured in various plant-based media to obtain an edible and better-tasting final product over commercially available media like MRS broth. A coconut-based medium with additives was optimized using response surface methodology (RSM) to increase GABA and BLIS production. The optimized medium for maximum GABA production (3.22 ± 0.01 mg/mL) and BLIS activity (84.40 ± 0.44%) was a 5.5% coconut medium containing 0.23% glucose, 1.44% Tween 20, 0.48% L-glutamic acid, and 0.02% pyridoxine. Due to the presence of GABA, the cell-free supernatant (CFS) as a postbiotic showed higher antioxidant activity than other food preservatives like nisin and potassium sorbate. Finally, microbiological tests on food samples showed that the postbiotic was more effective than other preservatives at combating the growth of LAB, molds and coliform bacteria, making it a possible food preservative.
  2. Neela VK, Philip N, Raja P, Sekawi Z
    Microbiol Resour Announc, 2023 Dec 14;12(12):e0085923.
    PMID: 37962390 DOI: 10.1128/MRA.00859-23
    We report complete genome sequences of two Leptospira isolates, Leptospira borgpetersenii strain HP364 and Leptospira weilii strain SC295. The genome sizes of L. borgpetersenii strain HP364 and L. weilii strain SC295 were 3,874,738 bp and 4,063,712 bp, respectively. Both genomes have been deposited in NCBI GenBank.
  3. Vasudevan M, Perumal V, Karuppanan S, Ovinis M, Bothi Raja P, Gopinath SCB, et al.
    Crit Rev Anal Chem, 2022 Oct 26.
    PMID: 36288094 DOI: 10.1080/10408347.2022.2135090
    Biopolymers are an attractive green alternative to conventional polymers, owing to their excellent biocompatibility and biodegradability. However, their amorphous and nonconductive nature limits their potential as active biosensor material/substrate. To enhance their bio-analytical performance, biopolymers are combined with conductive materials to improve their physical and chemical characteristics. We review the main advances in the field of electrochemical biosensors, specifically the structure, approach, and application of biopolymers, as well as their conjugation with conductive nanoparticles, polymers and metal oxides in green-based noninvasive analytical biosensors. In addition, we reviewed signal measurement, substrate bio-functionality, biochemical reaction, sensitivity, and limit of detection (LOD) of different biopolymers on various transducers. To date, pectin biopolymer, when conjugated with either gold nanoparticles, polypyrrole, reduced graphene oxide, or multiwall carbon nanotubes forming nanocomposites on glass carbon electrode transducer, tends to give the best LOD, highest sensitivity and can detect multiple analytes/targets. This review will spur new possibilities for the use of biosensors for medical diagnostic tests.
  4. Philip N, Bahtiar Affendy N, Ramli SNA, Arif M, Raja P, Nagandran E, et al.
    PLoS Negl Trop Dis, 2020 Mar;14(3):e0008197.
    PMID: 32203511 DOI: 10.1371/journal.pntd.0008197
    BACKGROUND: Leptospirosis, commonly known as rat-urine disease, is a global but endemic zoonotic disease in the tropics. Despite the historical report of leptospirosis in Malaysia, the information on human-infecting species is limited. Determining the circulating species is important to understand its epidemiology, thereby to strategize appropriate control measures through public health interventions, diagnostics, therapeutics and vaccine development.

    METHODOLOGY/PRINCIPLE FINDINGS: We investigated the human-infecting Leptospira species in blood and serum samples collected from clinically suspected leptospirosis patients admitted to three tertiary care hospitals in Malaysia. From a total of 165 patients, 92 (56%) were confirmed cases of leptospirosis through Microscopic Agglutination Test (MAT) (n = 43; 47%), Polymerase Chain Reaction (PCR) (n = 63; 68%) or both MAT and PCR (n = 14; 15%). The infecting Leptospira spp., determined by partial 16S rDNA (rrs) gene sequencing revealed two pathogenic species namely Leptospira interrogans (n = 44, 70%) and Leptospira kirschneri (n = 17, 27%) and one intermediate species Leptospira wolffii (n = 2, 3%). Multilocus sequence typing (MLST) identified an isolate of L. interrogans as a novel sequence type (ST 265), suggesting that this human-infecting strain has a unique genetic profile different from similar species isolated from rodents so far.

    CONCLUSIONS/SIGNIFICANCE: Leptospira interrogans and Leptospira kirschneri were identified as the dominant Leptospira species causing human leptospirosis in Central Malaysia. The existence of novel clinically important ST 265 (infecting human), that is different from rodent L. interrogans strains cautions reservoir(s) of these Leptospira lineages are yet to be identified.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links