Nanobiotechnology is a popular branch of science that is gaining interest among scientists and researchers as it allows for the green manufacturing of nanoparticles by employing plants as reducing agents. This method is safe, cheap, reproducible, and eco-friendly. In this study, the therapeutic property of Piper nigrum fruit was mixed with the antibacterial activity of metallic copper to produce copper nanoparticles. The synthesis of copper nanoparticles was indicated by a color change from brown to blue. Physical characterization of Piper nigrum copper nanoparticles (PN-CuNPs) was performed using UV-vis spectroscopy, FT-IR, SEM, EDX, XRD, and Zeta analyzer. PN-CuNPs exhibited potential antioxidant, antibacterial, and cytotoxic activities. PN-CuNPs have shown concentration-dependent, enhanced free radical scavenging activity, reaching maximum values of 92%, 90%, and 86% with DPPH, H2O2, and PMA tests, respectively. The antibacterial zone of inhibition of PN-CuNPs was the highest against Staphylococcus aureus (23 mm) and the lowest against Escherichia coli (10 mm). PN-CuNPs showed 80% in vitro cytotoxicity against MCF-7 breast cancer cell lines. Furthermore, more than 50 components of Piper nigrum extract were selected and subjected to in silico molecular docking using the C-Docker protocol in the binding pockets of glutathione reductase, E. coli DNA gyrase topoisomerase II, and epidermal growth factor receptor (EGFR) tyrosine to discover their druggability. Pipercyclobutanamide A (26), pipernigramide F (32), and pipernigramide G (33) scored the highest Gibbs free energy at 50.489, 51.9306, and 58.615 kcal/mol, respectively. The ADMET/TOPKAT analysis confirmed the favorable pharmacokinetics, pharmacodynamics, and toxicity profiles of the three promising compounds. The present in silico analysis helps us to understand the possible mechanisms behind the antioxidant, antibacterial, and cytotoxic activities of CuNPs and recommends them as implicit inhibitors of selected proteins.
The COVID-19 pandemic has had a profound impact on provision of endoscopy services globally as staff and real estate were repurposed. As we begin to recover from the pandemic, a cohesive international approach is needed, and guidance on how to resume endoscopy services safely to avoid unintended harm from diagnostic delays. The aim of these guidelines is to provide consensus recommendations that clinicians can use to facilitate the swift and safe resumption of endoscopy services. An evidence-based literature review was carried out on the various strategies used globally to manage endoscopy during the COVID-19 pandemic and control infection. A modified Delphi process involving international endoscopy experts was used to agree on the consensus statements. A threshold of 80% agreement was used to establish consensus for each statement. 27 of 30 statements achieved consensus after two rounds of voting by 34 experts. The statements were categorised as pre-endoscopy, during endoscopy and postendoscopy addressing relevant areas of practice, such as screening, personal protective equipment, appropriate environments for endoscopy and infection control precautions, particularly in areas of high disease prevalence. Recommendations for testing of patients and for healthcare workers, appropriate locations of donning and doffing areas and social distancing measures before endoscopy are unique and not dealt with by any other guidelines. This international consensus using a modified Delphi method to produce a series of best practice recommendations to aid the safe resumption of endoscopy services globally in the era of COVID-19.