Displaying all 5 publications

Abstract:
Sort:
  1. Choong YS, Lim YY, Soong JX, Savoo N, Guida C, Rhyman L, et al.
    Hormones (Athens), 2021 Sep;20(3):557-569.
    PMID: 33782920 DOI: 10.1007/s42000-021-00278-2
    PURPOSE: Diabetes mellitus is a common condition in the clinically obese. Bariatric surgery is one of the ways to put type 2 diabetes in remission. Recent findings propose the appetite-regulator peptide tyrosine tyrosine (PYY) as a therapeutic option for patients with type 2 diabetes. This novel gut hormone restores impaired insulin and glucagon secretion in pancreatic islets and is implicated in type 2 diabetes reversal after bariatric surgery. The current study elucidates the interactions between PYY and the NPY1R and NPY4R receptors using computational methods.

    METHODS: Protein structure prediction, molecular docking simulation, and molecular dynamics (MD) simulation were performed to elucidate the interactions of PYY with NPY1R and NPY4R.

    RESULTS: The predicted binding models of PYY-NPY receptors are in agreement with those described in the literature, although different interaction partners are presented for the C-terminal tail of PYY. Non-polar interactions are predicted to drive the formation of the protein complex. The calculated binding energies show that PYY has higher affinity for NPY4R (ΔGGBSA = -65.08 and ΔGPBSA = -87.62 kcal/mol) than for NPY1R (ΔGGBSA = -23.11 and ΔGPBSA = -50.56 kcal/mol).

    CONCLUSIONS: Based on the constructed models, the binding conformations obtained from docking and MD simulation for both the PYY-NPY1R and PYY-NPY4R complexes provide a detailed map of possible interactions. The calculated binding energies show a higher affinity of PYY for NPY4R. These findings may help to understand the mechanisms behind the improvement of diabetes following bariatric surgery.

  2. Chidan Kumar CS, Fun HK, Parlak C, Rhyman L, Ramasami P, Tursun M, et al.
    PMID: 24858359 DOI: 10.1016/j.saa.2014.04.155
    A novel (2E)-1-(5-chlorothiophen-2-yl)-3-(naphthalen-2-yl)prop-2-en-1-one [C17H11ClOS] compound has been synthesized and its structure has been characterized by FT-IR, Raman and single-crystal X-ray diffraction techniques. The isomers, optimized geometrical parameters, normal mode frequencies and corresponding vibrational assignments of the compound have been examined by means of the density functional theory method, employing, the Becke-3-Lee-Yang-Parr functional and the 6-311+G(3df,p) basis set. Reliable vibrational assignments and molecular orbitals have been investigated by the potential energy distribution and natural bonding orbital analyses, respectively. The compound crystallizes in the monoclinic space group P2₁/c with the unit cell parameters a=5.7827(8)Å, b=14.590(2)Å, c=16.138(2)Å and β=89.987 (°). The CC bond of the central enone group adopts an E configuration. There is a good agreement between the theoretically predicted structural parameters and vibrational frequencies and those obtained experimentally.
  3. Parlak C, Ramasami P, Kumar CS, Tursun M, Quah CK, Rhyman L, et al.
    PMID: 25974671 DOI: 10.1016/j.saa.2015.04.022
    A novel (2E)-1-(5-chlorothiophen-2-yl)-3-{4-[(E)-2-phenylethenyl]phenyl}prop-2-en-1-one [C21H15ClOS] compound has been synthesized and its structure has been characterized by FT-IR, Raman and single-crystal X-ray diffraction techniques. The conformational isomers, optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of the compound have been examined by means of HF, MP2, BP86, BLYP, BMK, B3LYP, B3PW91, B3P86 and M06-2X functionals. Reliable vibrational assignments and molecular orbitals have been investigated by the potential energy distribution and natural bonding orbital analyses, respectively. The compound crystallizes in the triclinic space group P-1 with the cis-trans-trans form. There is a good agreement between the experimentally determined structural parameters and vibrational frequencies of the compound and those predicted theoretically using the density functional theory with the BLYP and BP86 functionals.
  4. Tursun M, Kumar CS, Bilge M, Rhyman L, Fun HK, Parlak C, et al.
    PMID: 25829021 DOI: 10.1016/j.saa.2015.03.022
    Molecular structure and properties of 2-fluoro-4-bromobenzaldehyde (FBB, C7H4BrFO) was experimentally investigated by X-ray diffraction technique and vibrational spectroscopy. Experimental results on the molecular structure of FBB were supported with computational studies using the density functional theory, with the Becke-3-Lee-Yang-Parr functional and the 6-311+G(3df,p) basis set. Molecular dimer formed by the intermolecular hydrogen bonding was investigated. Potential energy distribution analysis of normal modes was performed to identify characteristic frequencies. FBB crystallizes in orthorhombic space group P2(1)2(1)2(1) with the O-trans conformation. In order to investigate halogen effect, the chloro- (CBB) and bromo- (BBB) analogs of FBB have also been studied theoretically. It is observed that all compounds prefer the stable O-trans conformation. Although the free energy difference between the O-cis and O-trans conformers is less than 2.5 kcal/mol, the free energy rotational barrier is at least 7.4 kcal/mol. There is a good agreement between the experimentally determined structural parameters, and vibrational frequencies of FBB and those predicted theoretically.
  5. Kumar CS, Parlak C, Tursun M, Fun HK, Rhyman L, Ramasami P, et al.
    PMID: 25767992 DOI: 10.1016/j.saa.2015.02.079
    The structure of 3-iodobenzaldehyde (3IB) was characterized by FT-IR, Raman and single-crystal X-ray diffraction techniques. The conformational isomers, optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of 3IB were examined using density functional theory (DFT) method, with the Becke-3-Lee-Yang-Parr (B3LYP) functional and the 6-311+G(3df,p) basis set for all atoms except for iodine. The LANL2DZ effective core basis set was used for iodine. Potential energy distribution (PED) analysis of normal modes was performed to identify characteristic frequencies. 3IB crystallizes in monoclinic space group P21/c with the O-trans form. There is a good agreement between the theoretically predicted structural parameters, and vibrational frequencies and those obtained experimentally. In order to understand halogen effect, 3-halogenobenzaldehyde [XC6H4CHO; X=F, Cl and Br] was also studied theoretically. The free energy difference between the isomers is small but the rotational barrier is about 8kcal/mol. An atypical behavior of fluorine affecting conformational preference is observed.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links