The present work reviews the current fabrication methods of the functionally graded polymeric material (FGPM) and introduces a novel fabrication method that is versatile in applications as compared to those of existing used methods. For the first time electrophoresis was used to control the distribution of the tetracycline hydrochloride (TC) in a film made of polylactic acid (PLA), aiming to induce antimicrobial effect on the film prepared. The elemental analysis on the film surface showed that by employing electrophoresis force, higher amount of TC was detected near the top surface of the film. Results also showed that the FGPM samples with higher percentage of the TC on the film surface were highly effective to minimize the growth of Escherichia coli. These findings are useful and important to improve dispersion quality of the particles in the composite material and further enhance its antibacterial property.
Polyether ether ketone (PEEK) is considered the best alternative material for titanium for spinal fusion cage implants due to its low elasticity modulus and radiolucent property. The main problem of PEEK is its bioinert properties. Coating with hydroxyapatite (HA) showed very good improvement in bioactivity of the PEEK implants. However the existing methods for deposition of HA have some disadvantages and damage the PEEK substrate. In our previous study a new method for deposition of HA on PEEK was presented. In this study cell proliferation of mesenchymal stem cell and apatite formation in simulated body fluid (SBF) tests were conducted to probe the effect of this new method in improvement of the bioactivity of PEEK. The mesenchymal stem cell proliferation result showed better cells proliferation on the treated layer in comparison with untreated PEEK. The apatite formation results showed the growth of the HA on the treated PEEK but there was not any sight of the growth of HA on the untreated PEEK even after 2 weeks. The results showed the new method of the HA deposition improved the bioactivity of the treated PEEK in comparison with the bare PEEK.
The mechanical properties of coated layers are one of the important factors for the long-term success of orthopeadic and dental implants. In this study, the mechanical properties of the porous coated layer were examined via scratch and nanoindentation tests. The effect of compression load on the porous coated layer of sulphonated poly ether ether ketone/Hydroxyapatite was studied to determine whether it changes its mechanical properties. The water contact angle and surface roughness of the compressed coated layer were also measured. The results showed a significant increase in elastic modulus, with mean values ranging from 0.464 GPa to 1.199 GPa (p<0.05). The average scratch hardness also increased significantly from 69.9 MPa to 95.7 MPa after compression, but the surface roughness and wettability decreased significantly (p<0.05). Simple compression enhanced the mechanical properties of the sulphonated poly ether ether ketone/hydroxyapatite coated layer, and the desired mechanical properties for orthopaedic and dental implant application can be achieved.